European Radiology

, Volume 22, Issue 7, pp 1547–1555 | Cite as

Emphysema lung lobe volume reduction: effects on the ipsilateral and contralateral lobes

  • Matthew S. Brown
  • Hyun J. Kim
  • Fereidoun G. Abtin
  • Charlie Strange
  • Maya Galperin-Aizenberg
  • Richard Pais
  • Irene G. Da Costa
  • Arash Ordookhani
  • Daniel Chong
  • Chiayi Ni
  • Michael F. McNitt-Gray
  • Donald P. Tashkin
  • Jonathan G. Goldin
Chest

Abstract

Objectives

To investigate volumetric and density changes in the ipsilateral and contralateral lobes following volume reduction of an emphysematous target lobe.

Methods

The study included 289 subjects with heterogeneous emphysema, who underwent bronchoscopic volume reduction of the most diseased lobe with endobronchial valves and 132 untreated controls. Lobar volume and low-attenuation relative area (RA) changes post-procedure were measured from computed tomography images. Regression analysis (Spearman’s rho) was performed to test the association between change in the target lobe volume and changes in volume and density variables in the other lobes.

Results

The target lobe volume at full inspiration in the treatment group had a mean reduction of −0.45 L (SE = 0.034, P < 0.0001), and was associated with volume increases in the ipsilateral lobe (rho = −0.68, P < 0.0001) and contralateral lung (rho = −0.16, P = 0.006), and overall reductions in expiratory RA (rho = 0.31, P < 0.0001) and residual volume (RV)/total lung capacity (TLC) (rho = 0.13, P = 0.03).

Conclusions

When the volume of an emphysematous target lobe is reduced, the volume is redistributed primarily to the ipsilateral lobe, with an overall reduction. Image-based changes in lobar volumes and densities indicate that target lobe volume reduction is associated with statistically significant overall reductions in air trapping, consistent with expansion of the healthier lung.

Key Points

Computed tomography allows assessment of the treatment of emphysema with endobronchial valves.

Endobronchial valves can reduce the volume of an emphysematous lung lobe.

Compensatory expansion is greater in ipsilateral lobes than in the contralateral lung.

• Reduced air trapping is measurable by RV/TLC and smaller low attenuation area.

Keywords

Chronic obstructive pulmonary disease Computed tomography Computer-assisted image processing Lung Lung volume reduction 

Notes

Acknowledgement

Supported by: UC Discovery Grant it106-1058.

References

  1. 1.
    Halbert RJ, Natoli JL, Gano A, Badmagarav E, Buist AS, Mannino DM (2006) Global burden of COPD: systematic review and meta-analysis. Eur Respir J 28:523–532PubMedCrossRefGoogle Scholar
  2. 2.
    Sciurba FC, Rogers RM, Keenan RJ et al (1996) Improvement in pulmonary function and elastic recoil after lung-reduction surgery for diffuse emphysema. N Engl J Med 334:1095–1099PubMedCrossRefGoogle Scholar
  3. 3.
    Martinez FJ, de Oca MM, Whyte RI, Stetz J, Gay SE, Celli BR (1997) Lung-volume reduction improves dyspnea, dynamic hyperinflation, and respiratory muscle function. Am J Respir Crit Care Med 155:1984–1990PubMedGoogle Scholar
  4. 4.
    Sabanathan A, Sabanathan S, Shah R, Richardson J (1998) Lung volume reduction surgery for emphysema. A review. J Cardiovasc Surg 39:237–243Google Scholar
  5. 5.
    Geddes D, Davies M, Koyama H et al (2000) Effect of lung-column-reduction surgery in patients with severe emphysema. N Engl J Med 343:239–245PubMedCrossRefGoogle Scholar
  6. 6.
    Gelb AF, McKenna RJ Jr, Brenner M, Schein MJ, Zamel N, Fischel R (1999) Lung function 4 years after lung volume reduction surgery for emphysema. Chest 116:1608–1615PubMedCrossRefGoogle Scholar
  7. 7.
    Fishman A, Martinez F, Naunheim K et al (2003) A randomized trial comparing lung-volume-reduction surgery with medical therapy for severe emphysema. N Engl J Med 348:2059–2073PubMedCrossRefGoogle Scholar
  8. 8.
    Brenner M, McKenna R, Gelb A et al (1997) Objective predictors of response for staple versus laser emphysematous lung reduction. Am J Respir Crit Care Med 155:1295–1301PubMedGoogle Scholar
  9. 9.
    Cooper JD, Patterson GA, Sundaresan RS, Trulock EP, Yusen R (1996) Reduction procedures in patients with severe emphysema. J Thorac Cardiovasc Surg 112:1319–1330PubMedCrossRefGoogle Scholar
  10. 10.
    Ingenito EP, Evans RB, Loring SH et al (1998) Relation between preoperative inspiratory lung resistance and the outcome of lung-volume reduction surgery for emphysema. N Engl J Med 338:1181–1185PubMedCrossRefGoogle Scholar
  11. 11.
    McKenna R, Brenner M, Fischel RJ et al (1997) Patient selection criteria for lung volume reduction surgery. J Thorac Cardiovasc Surg 114:957–967PubMedCrossRefGoogle Scholar
  12. 12.
    Thurnheer R, Engel H, Weder W et al (1999) Role of lung perfusion scintigraphy in relation to chest computed tomography and pulmonary function in the evaluation of candidates for lung volume reduction surgery. Am J Respir Crit Care Med 159:301–310PubMedGoogle Scholar
  13. 13.
    Fessler HE, Scharf SM, Permutt S (2002) Improvement in spirometry following lung volume reduction surgery. Application of Physiologic Model. Am J Respir Crit Care Med 165:34–40PubMedGoogle Scholar
  14. 14.
    Fessler HE, Scharf SM, Ingenito EP, McKenna RJ Jr, Sharafkhaneh A (2008) Physiologic basis for improved pulmonary function after lung volume reduction. Proc Am Thorac Soc 5:416–420PubMedCrossRefGoogle Scholar
  15. 15.
    Hopkinson NS, Toma TP, Hansell DM et al (2005) Effect of bronchoscopic lung volume reduction on dynamic hyperinflation and exercise in emphysema. Am J Crit Care Med 171:453–460CrossRefGoogle Scholar
  16. 16.
    Hoppin F (1997) Theoretical basis for improvement following reduction pneumoplasty in emphysema. Am J Respir Crit Care Med 155:520–525PubMedGoogle Scholar
  17. 17.
    Weinmann CG, Hyatt R (1996) Evaluation and research in lung volume reduction surgery. Am J Respir Crit Care Med 154:1913–1918PubMedGoogle Scholar
  18. 18.
    Rogers RM, Sciurba FC, Keenan RJ (1996) Lung reduction surgery in chronic obstructive lung disease. Med Clin N Am 80:623–644PubMedGoogle Scholar
  19. 19.
    Strange C, Herth FJ, Kovitz KL, the VENT Study Group et al (2007) Design of the endobronchial valve for emphysema palliation trial (VENT): a non-surgical method of lung volume reduction. BMC Pulm Med 7:10Google Scholar
  20. 20.
    Coxson HO, Nasute Fauerbach PV, Storness-Bliss C et al (2008) Computed tomography assessment of lung volume changes after bronchial valve treatment. Eur Respir J 32:1443–1450PubMedCrossRefGoogle Scholar
  21. 21.
    Sciurba FC, Ernst A, Herth FJ, for the VENT Study Group et al (2010) A randomized study of endobronchial valves for advanced emphysema. N Engl J Med 363:1233–1244PubMedCrossRefGoogle Scholar
  22. 22.
    Brown MS, McNitt-Gray MF, Goldin JG et al (1999) Automated measurement of single and total lung volume from CT. J Comput Assist Tomogr 23:632–640PubMedCrossRefGoogle Scholar
  23. 23.
    Zhang L, Hoffman EA, Reinhardt JM (2003) Atlas-driven lung lobe segmentation in volumetric x-ray CT images. Proc SPIE 5032:309–319Google Scholar
  24. 24.
    Muller NL, Staples CA, Miller RR, Abboud RT (1988) Density mask: an objective method to quantitative emphysema using computed tomography. Chest 94:782–787PubMedCrossRefGoogle Scholar
  25. 25.
    Coxson HO, Rogers RM, Whittall KP (1995) The measurement of lung expansion with computed tomography and comparison with quantitative histology. J Appl Physiol 79:1525–1530PubMedGoogle Scholar
  26. 26.
    Brown MS, Kim HJ, Abtin F et al (2010) Reproducibility of lung and lobar volume measurements using computed tomography. Acad Radiol 17:316–322PubMedCrossRefGoogle Scholar
  27. 27.
    Brown MS, McNitt-Gray MF, Mankovich NJ et al (1997) Method for segmenting chest CT image data using an anatomical model: preliminary results. IEEE Trans Med Imaging 16:828–839PubMedCrossRefGoogle Scholar
  28. 28.
    Brown MS, Goldin JG, McNitt-Gray MF et al (2000) Knowledge-based segmentation of thoracic CT images for assessment of split lung function. Med Phys 27:592–598PubMedCrossRefGoogle Scholar
  29. 29.
    Gevenois PA, De Vuyst P, Sy M et al (1996) Pulmonary emphysema: quantitative CT during expiration. Radiology 199:825–829PubMedGoogle Scholar
  30. 30.
    Dowson LJ, Guest PJ, Hill SL, Holder RL, Stockley RA (2001) High-resolution computed tomography scanning in antitrypsin deficiency: relationship to lung function and health status. Eur Respir J 17:1097–1104PubMedCrossRefGoogle Scholar
  31. 31.
    Dykstra BJ, Scanlon PD, Kester MM, Beck KC, Enright PL (1999) Lung volumes in 4,744 patients with obstructive lung disease. Chest 115:68–74PubMedCrossRefGoogle Scholar
  32. 32.
    Pitcher WD, Cunningham HS (1993) Oxygen cost of increasing tidal volume and diaphragm flattening in obstructive pulmonary disease. J Appl Physiol 74:2750–2756PubMedGoogle Scholar
  33. 33.
    Matsuoka S, Kurihara Y, Yagihashi K, Hoshino M, Watanabe N, Nakajima Y (2008) Quantitative assessment of air trapping in chronic obstructive pulmonary disease using inspiratory and expiratory volumetric MDCT. AJR Am J Roentgenol 190:762–769PubMedCrossRefGoogle Scholar
  34. 34.
    Ferguson GT (2006) Why does the lung hyperinflate? Proc Am Thorac Soc 3:176–179PubMedCrossRefGoogle Scholar
  35. 35.
    Woolcock AJ, Read J (1966) Lung volumes in exacerbations of asthma. Am J Med 41:259–273PubMedCrossRefGoogle Scholar
  36. 36.
    Brenner M, Hanna NM, Mina-Araghi R, Gelb AF, McKenna RJ Jr, Colt H (2004) Innovative approaches to lung volume reduction for emphysema. Chest 126:238–248PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2012

Authors and Affiliations

  • Matthew S. Brown
    • 1
  • Hyun J. Kim
    • 1
  • Fereidoun G. Abtin
    • 1
  • Charlie Strange
    • 2
  • Maya Galperin-Aizenberg
    • 1
  • Richard Pais
    • 1
  • Irene G. Da Costa
    • 1
  • Arash Ordookhani
    • 1
  • Daniel Chong
    • 1
  • Chiayi Ni
    • 1
  • Michael F. McNitt-Gray
    • 1
  • Donald P. Tashkin
    • 3
  • Jonathan G. Goldin
    • 1
  1. 1.Center for Computer Vision and Imaging Biomarkers, Department of Radiological SciencesDavid Geffen School of Medicine at UCLALos AngelesUSA
  2. 2.Department of Pulmonary and Critical Care MedicineMedical University of South CarolinaColumbiaUSA
  3. 3.Division of Pulmonary and Critical Care MedicineDavid Geffen School of Medicine at UCLALos AngelesUSA

Personalised recommendations