Advertisement

European Radiology

, Volume 22, Issue 7, pp 1397–1403 | Cite as

Predicting stroke evolution: comparison of susceptibility-weighted MR imaging with MR perfusion

  • Hung-Wen Kao
  • Fong Y. Tsai
  • Anton N. Hasso
Neuro

Abstract

Objectives

To investigate the ability of susceptibility-weighted imaging (SWI) to predict stroke evolution in comparison with perfusion-weighted imaging (PWI).

Methods

In a retrospective analysis of 15 patients with non-lacunar ischaemic stroke studied no later than 24 h after symptom onset, we used the Alberta Stroke Program Early CT Score (ASPECTS) to compare lesions on initial diffusion-weighted images (DWI), SWI, PWI and follow-up studies obtained at least 5 days after symptom onset. The National Institutes of Health Stroke Scale scores at entry and stroke risk factors were documented. The clinical–DWI, SWI–DWI and PWI–DWI mismatches were calculated.

Results

SWI–DWI and mean transit time (MTT)–DWI mismatches were significantly associated with higher incidence of infarct growth (P = 0.007 and 0.028) and had similar ability to predict stroke evolution (P = 1.0). ASPECTS values on initial DWI, SWI and PWI were significantly correlated with those on follow-up studies (P ≤ 0.026) but not associated with infarct growth. The SWI ASPECTS values were best correlated with MTT ones (ρ = 0.8, P < 0.001).

Conclusions

SWI is an alternative to PWI to assess penumbra and predict stroke evolution. Further prospective studies are needed to evaluate the role of SWI in guiding thrombolytic therapy.

Key Points

SWI can provide perfusion information comparable to MTT

SWI–DWI mismatch can indicate ischaemic penumbra

SWI–DWI mismatch can be a predictor for stroke evolution

Keywords

Diffusion-weighted imaging Magnetic resonance imaging Perfusion-weighted imaging Stroke Susceptibility-weighted imaging 

References

  1. 1.
    Astrup J, Siesjo BK, Symon L (1981) Thresholds in cerebral ischemia – the ischemic penumbra. Stroke 12:723–725PubMedCrossRefGoogle Scholar
  2. 2.
    Barber PA, Darby DG, Desmond PM et al (1998) Prediction of stroke outcome with echoplanar perfusion- and diffusion-weighted MRI. Neurology 51:418–426PubMedCrossRefGoogle Scholar
  3. 3.
    Parsons MW, Yang Q, Barber PA et al (2001) Perfusion magnetic resonance imaging maps in hyperacute stroke: relative cerebral blood flow most accurately identifies tissue destined to infarct. Stroke 32:1581–1587PubMedCrossRefGoogle Scholar
  4. 4.
    Davis SM, Donnan GA, Butcher KS et al (2005) Selection of thrombolytic therapy beyond 3 h using magnetic resonance imaging. Curr Opin Neurol 18:47–52PubMedCrossRefGoogle Scholar
  5. 5.
    Haacke EM, Xu Y, Cheng YC et al (2004) Susceptibility weighted imaging (SWI). Magn Reson Med 52:612–618PubMedCrossRefGoogle Scholar
  6. 6.
    Reichenbach JR, Venkatesan R, Schillinger DJ et al (1997) Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology 204:272–277PubMedGoogle Scholar
  7. 7.
    Sehgal V, Delproposto Z, Haacke EM et al (2005) Clinical applications of neuroimaging with susceptibility-weighted imaging. J Magn Reson Imaging 22:439–450PubMedCrossRefGoogle Scholar
  8. 8.
    Tsui YK, Tsai FY, Hasso AN et al (2009) Susceptibility-weighted imaging for differential diagnosis of cerebral vascular pathology: a pictorial review. J Neurol Sci 287:7–16PubMedCrossRefGoogle Scholar
  9. 9.
    Derdeyn CP, Yundt KD, Videen TO et al (1998) Increased oxygen extraction fraction is associated with prior ischemic events in patients with carotid occlusion. Stroke 29:754–758PubMedCrossRefGoogle Scholar
  10. 10.
    Grubb RL Jr, Derdeyn CP, Fritsch SM et al (1998) Importance of hemodynamic factors in the prognosis of symptomatic carotid occlusion. JAMA 280:1055–1060PubMedCrossRefGoogle Scholar
  11. 11.
    Lee JM, Vo KD, An H et al (2003) Magnetic resonance cerebral metabolic rate of oxygen utilization in hyperacute stroke patients. Ann Neurol 53:227–232PubMedCrossRefGoogle Scholar
  12. 12.
    Li D, Wang Y, Waight DJ (1998) Blood oxygen saturation assessment in vivo using T2* estimation. Magn Reson Med 39:685–690PubMedCrossRefGoogle Scholar
  13. 13.
    An H, Lin W (2000) Quantitative measurements of cerebral blood oxygen saturation using magnetic resonance imaging. J Cereb Blood Flow Metab 20:1225–1236PubMedCrossRefGoogle Scholar
  14. 14.
    Barber PA, Demchuk AM, Zhang J et al (2000) Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. Lancet 355:1670–1674PubMedCrossRefGoogle Scholar
  15. 15.
    Tei H, Uchiyama S, Usui T (2007) Clinical-diffusion mismatch defined by NIHSS and ASPECTS in non-lacunar anterior circulation infarction. J Neurol 254:340–346PubMedCrossRefGoogle Scholar
  16. 16.
    Chemmanam T, Campbell BC, Christensen S et al (2010) Ischemic diffusion lesion reversal is uncommon and rarely alters perfusion-diffusion mismatch. Neurology 75:1040–1047PubMedCrossRefGoogle Scholar
  17. 17.
    Harrer JU (2010) Clinical applicability and the perfusion-diffusion mismatch theory: not yet a perfect match. Neurology 75:1034–1035PubMedCrossRefGoogle Scholar
  18. 18.
    Hill MD, Rowley HA, Adler F et al (2003) Selection of acute ischemic stroke patients for intra-arterial thrombolysis with pro-urokinase by using ASPECTS. Stroke 34:1925–1931PubMedCrossRefGoogle Scholar
  19. 19.
    Pexman JH, Barber PA, Hill MD et al (2001) Use of the Alberta Stroke Program Early CT Score (ASPECTS) for assessing CT scans in patients with acute stroke. AJNR Am J Neuroradiol 22:1534–1542PubMedGoogle Scholar
  20. 20.
    Butcher K, Parsons M, Allport L et al (2008) Rapid assessment of perfusion-diffusion mismatch. Stroke 39:75–81PubMedCrossRefGoogle Scholar
  21. 21.
    Tei H, Uchiyama S, Usui T et al (2011) Diffusion-weighted ASPECTS as an independent marker for predicting functional outcome. J Neurol 258:559–565PubMedCrossRefGoogle Scholar
  22. 22.
    Schaefer PW, Hunter GJ, He J et al (2002) Predicting cerebral ischemic infarct volume with diffusion and perfusion MR imaging. AJNR Am J Neuroradiol 23:1785–1794PubMedGoogle Scholar
  23. 23.
    Kane I, Sandercock P, Wardlaw J (2007) Magnetic resonance perfusion diffusion mismatch and thrombolysis in acute ischaemic stroke: a systematic review of the evidence to date. J Neurol Neurosurg Psychiatry 78:485–491PubMedCrossRefGoogle Scholar
  24. 24.
    Yata K, Suzuki A, Hatazawa J et al (2006) Relationship between cerebral circulatory reserve and oxygen extraction fraction in patients with major cerebral artery occlusive disease: a positron emission tomography study. Stroke 37:534–536PubMedCrossRefGoogle Scholar
  25. 25.
    Kamath A, Smith WS, Powers WJ et al (2008) Perfusion CT compared to H2 (15)O/O (15)O PET in patients with chronic cervical carotid artery occlusion. Neuroradiology 50:745–751PubMedCrossRefGoogle Scholar
  26. 26.
    Nandigam RN, Viswanathan A, Delgado P et al (2009) MR imaging detection of cerebral microbleeds: effect of susceptibility-weighted imaging, section thickness, and field strength. AJNR Am J Neuroradiol 30:338–343PubMedCrossRefGoogle Scholar
  27. 27.
    Mittal S, Wu Z, Neelavalli J et al (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. AJNR Am J Neuroradiol 30:232–252PubMedCrossRefGoogle Scholar
  28. 28.
    Olivot JM, Mlynash M, Thijs VN et al (2009) Relationships between cerebral perfusion and reversibility of acute diffusion lesions in DEFUSE: insights from RADAR. Stroke 40:1692–1697PubMedCrossRefGoogle Scholar
  29. 29.
    Karonen JO, Vanninen RL, Liu Y et al (1999) Combined diffusion and perfusion MRI with correlation to single-photon emission CT in acute ischemic stroke. Ischemic penumbra predicts infarct growth. Stroke 30:1583–1590PubMedCrossRefGoogle Scholar
  30. 30.
    Perkio J, Soinne L, Ostergaard L et al (2005) Abnormal intravoxel cerebral blood flow heterogeneity in human ischemic stroke determined by dynamic susceptibility contrast magnetic resonance imaging. Stroke 36:44–49PubMedCrossRefGoogle Scholar
  31. 31.
    Kane I, Carpenter T, Chappell F et al (2007) Comparison of 10 different magnetic resonance perfusion imaging processing methods in acute ischemic stroke: effect on lesion size, proportion of patients with diffusion/perfusion mismatch, clinical scores, and radiologic outcomes. Stroke 38:3158–3164PubMedCrossRefGoogle Scholar
  32. 32.
    Karonen JO, Liu Y, Vanninen RL et al (2000) Combined perfusion- and diffusion-weighted MR imaging in acute ischemic stroke during the 1st week: a longitudinal study. Radiology 217:886–894PubMedGoogle Scholar

Copyright information

© European Society of Radiology 2012

Authors and Affiliations

  • Hung-Wen Kao
    • 1
    • 2
  • Fong Y. Tsai
    • 1
    • 3
  • Anton N. Hasso
    • 1
  1. 1.Department of Radiological SciencesUniversity of California at Irvine Medical CenterIrvineUSA
  2. 2.Department of RadiologyTri-Service General Hospital, National Defense Medical CenterTaipei CityTaiwan
  3. 3.Medical Imaging Research CenterTaipei Medical UniversityTaipei CityTaiwan

Personalised recommendations