European Radiology

, Volume 22, Issue 6, pp 1357–1365 | Cite as

Quantitative evaluation of contrast-enhanced ultrasound after intravenous administration of a microbubble contrast agent for differentiation of benign and malignant thyroid nodules: assessment of diagnostic accuracy

  • Ursula Nemec
  • Stefan F. Nemec
  • Clemens Novotny
  • Michael Weber
  • Christian Czerny
  • Christian R. Krestan
Ultrasound

Abstract

Objectives

To investigate the diagnostic accuracy, through quantitative analysis, of contrast-enhanced ultrasound (CEUS), using a microbubble contrast agent, in the differentiation of thyroid nodules.

Methods

This prospective study enrolled 46 patients with solitary, scintigraphically non-functional thyroid nodules. These patients were scheduled for surgery and underwent preoperative CEUS with pulse-inversion harmonic imaging after intravenous microbubble contrast medium administration. Using histology as a standard of reference, time–intensity curves of benign and malignant nodules were compared by means of peak enhancement and wash-out enhancement relative to the baseline intensity using a mixed model ANOVA. ROC analysis was performed to assess the diagnostic accuracy in the differentiation of benign and malignant nodules on CEUS.

Results

The complete CEUS data of 42 patients (31/42 [73.8%] benign and 11/42 [26.2%] malignant nodules) revealed a significant difference (P < 0.001) in enhancement between benign and malignant nodules. Furthermore, based on ROC analysis, CEUS demonstrated sensitivity of 76.9%, specificity of 84.8% and accuracy of 82.6%.

Conclusions

Quantitative analysis of CEUS using a microbubble contrast agent allows the differentiation of benign and malignant thyroid nodules and may potentially serve, in addition to grey-scale and Doppler ultrasound, as an adjunctive tool in the assessment of patients with thyroid nodules.

Key Points

Contrast-enhanced ultrasound (CEUS) helps differentiate between benign and malignant thyroid nodules.

Quantitative CEUS analysis yields sensitivity of 76.9% and specificity of 84.8%.

CEUS may be a potentially useful adjunct in assessing thyroid nodules.

Keywords

Thyroid nodules Contrast-enhanced ultrasound Pulse inversion harmonic imaging Second generation microbubble contrast agent Quantitative analysis 

Notes

Acknowledgements

The authors wish to acknowledge Ms. Mary McAllister, MA (Johns Hopkins University, Baltimore, MD, USA), for her outstanding support in editing the manuscript.

Conflict of interest

The authors have indicated they have no financial relationships relevant to this article to disclose.

References

  1. 1.
    Mortensen JD, Woolner LB, Bennett WA (1955) Gross and microscopic findings in clinically normal thyroid glands. J Clin Endocrinol Metab 15:1270-1280PubMedCrossRefGoogle Scholar
  2. 2.
    Gharib H, Papini E, Paschke R et al; AACE/AME/ETA Task Force on Thyroid Nodules (2010) American Association of Clinical Endocrinologists, Associazione Medici Endocrinologi, and European Thyroid Association medical guidelines for clinical practice for the diagnosis and management of thyroid nodules: Executive Summary of recommendations. J Endocrinol Invest 33:287-291PubMedGoogle Scholar
  3. 3.
    Hegedüs L (2004) Clinical practice. The thyroid nodule. N Engl J Med 351:1764-1771Google Scholar
  4. 4.
    Frates MC, Benson CB, Charboneau JW et al; Society of Radiologists in Ultrasound (2005) Society of Radiologists in Ultrasound. Management of thyroid nodules detected at US: Society of Radiologists in Ultrasound consensus conference statement. Radiology 237:794-800 PubMedCrossRefGoogle Scholar
  5. 5.
    Moon WJ, Jung SL, Lee JH et al; Thyroid Study Group, Korean Society of Neuro- and Head and Neck Radiology (2008) Benign and malignant thyroid nodules: US differentiation—multicenter retrospective study. Radiology 247:762-770 PubMedCrossRefGoogle Scholar
  6. 6.
    Hoang JK, Lee WK, Lee M, Johnson D, Farrell S (2007) US Features of thyroid malignancy: pearls and pitfalls. Radiographics 27:847-860PubMedCrossRefGoogle Scholar
  7. 7.
    Bakhshaee M, Davoudi Y, Mehrabi M et al (2008) Vascular pattern and spectral parameters of power Doppler ultrasound as predictors of malignancy risk in thyroid nodules. Laryngoscope 118:2182-2186PubMedCrossRefGoogle Scholar
  8. 8.
    Frates MC, Benson CB, Doubilet PM, Cibas ES, Marqusee E (2003) Can color Doppler sonography aid in the prediction of malignancy of thyroid nodules? J Ultrasound Med 22:127-131PubMedGoogle Scholar
  9. 9.
    Moon HJ, Kwak JY, Kim MJ, Son EJ, Kim EK (2010) Can vascularity at power Doppler US help predict thyroid malignancy? Radiology 255:260-269PubMedCrossRefGoogle Scholar
  10. 10.
    Eisenbrey JR, Forsberg F (2010) Contrast-enhanced ultrasound for molecular imaging of angiogenesis. Eur J Nucl Med Mol Imaging 37 [Suppl 1]:138-146CrossRefGoogle Scholar
  11. 11.
    Fleischer AC, Niermann KJ, Donnelly EF et al (2004) Sonographic depiction of microvessel perfusion: principles and potential. J Ultrasound Med 23:1499-1506PubMedGoogle Scholar
  12. 12.
    Delorme S, Krix M (2006) Contrast-enhanced ultrasound for examining tumor biology. Cancer Imaging 27:148-152CrossRefGoogle Scholar
  13. 13.
    Wilson SR, Burns PN (2010) Microbubble-enhanced US in body imaging: what role? Radiology 257:24-39PubMedCrossRefGoogle Scholar
  14. 14.
    Kim AY, Choi BI, Kim TK, Kim KW, Lee JY, Han JK (2001) Comparison of contrast-enhanced fundamental imaging, second-harmonic imaging, and pulse-inversion harmonic imaging. Invest Radiol 36:582-588PubMedCrossRefGoogle Scholar
  15. 15.
    Greis C (2004) Technology overview: SonoVue (Bracco, Milan). Eur Radiol 14 [Suppl 8]:11-15Google Scholar
  16. 16.
    Cosgrove D (2004) Future prospects for SonoVue and CPS. Eur Radiol 14 [Suppl 8]:116-124 Google Scholar
  17. 17.
    Zhang B, Jiang YX, Liu JB et al (2010) Utility of contrast-enhanced ultrasound for evaluation of thyroid nodules. Thyroid 20:51-57PubMedCrossRefGoogle Scholar
  18. 18.
    Bartolotta TV, Midiri M, Galia M et al (2006) Qualitative and quantitative evaluation of solitary thyroid nodules with contrast-enhanced ultrasound: initial results. Eur Radiol 16:2234-2241 PubMedCrossRefGoogle Scholar
  19. 19.
    Argalia G, De Bernardis S, Mariani D et al (2002) Ultrasonographic contrast agent: evaluation of time-intensity curves in the characterization of solitary thyroid nodules. Radiol Med (Torino) 103:407-413Google Scholar
  20. 20.
    Spiezia S, Farina R, Cerbone G et al (2001) Analysis of color Doppler signal intensity variation after levovist injection: a new approach to the diagnosis of thyroid nodules. J Ultrasound Med 20:223-231PubMedGoogle Scholar
  21. 21.
    Appetecchia M, Bacaro D, Brigida R, Milardi D, Bianchi A, Solivetti F (2006) Second generation ultrasonographic contrast agents in the diagnosis of neoplastic thyroid nodules. J Exp Clin Cancer Res 25:325-330PubMedGoogle Scholar
  22. 22.
    Lyshchik A, Moses R, Barnes SL et al (2007) Quantitative analysis of tumor vascularity in benign and malignant solid thyroid nodules. J Ultrasound Med 26:837-846PubMedGoogle Scholar
  23. 23.
    Sun Y, Fang S, Dong H et al (2011) Correlation between osteopontin messenger RNA expression and microcalcification shown on sonography in papillary thyroid carcinoma. J Ultrasound Med 30:765-771PubMedGoogle Scholar
  24. 24.
    Baier ND, Hahn PF, Gervais DA et al (2009) Fine-needle aspiration biopsy of thyroid nodules: experience in a cohort of 944 patients. AJR Am J Roentgenol 193:1175-1179PubMedCrossRefGoogle Scholar
  25. 25.
    Forsberg F, Dicker AP, Thakur ML et al (2002) Comparing contrast-enhanced ultrasound to immunohistochemical markers of angiogenesis in a human melanoma xenograft model: preliminary results. Ultrasound Med Biol 28:445-451PubMedCrossRefGoogle Scholar
  26. 26.
    Carraro R, Molinari F, Deandrea M, Garberoglio R, Suri JS (2008) Characterization of thyroid nodules by 3-D contrast-enhanced ultrasound imaging. Conf Proc IEEE Eng Med Biol Soc 2008:2229-2232PubMedGoogle Scholar
  27. 27.
    Molinari F, Mantovani A, Deandrea M, Limone P, Garberoglio R, Suri JS (2010) Characterization of single thyroid nodules by contrast-enhanced 3-D ultrasound. Ultrasound Med Biol 36:1616-1625PubMedCrossRefGoogle Scholar
  28. 28.
    Papini E, Guglielmi R, Bianchini A et al (2002) Risk of malignancy in nonpalpable thyroid nodules: predictive value of ultrasound and color-Doppler features. J Clin Endocrinol Metab 87:1941-1946PubMedCrossRefGoogle Scholar
  29. 29.
    Iared W, Shigueoka DC, Cristófoli JC et al (2010) Use of color Doppler ultrasonography for the prediction of malignancy in follicular thyroid neoplasms: systematic review and meta-analysis. J Ultrasound Med 29:419-425PubMedGoogle Scholar
  30. 30.
    Nakase K, Yamamoto K, Hiasa A, Tawara I, Yamaguchi M, Shiku H (2006) Contrast-enhanced ultrasound examination of lymph nodes in different types of lymphoma. Cancer Detect Prev 30:188-91PubMedCrossRefGoogle Scholar
  31. 31.
    Kim AY, Park SB, Choi HS, Hwang JC (2007) Isolated thyroid metastasis from renal cell carcinoma. J Ultrasound Med 26:1799-802PubMedGoogle Scholar
  32. 32.
    Ignee A, Jedrejczyk M, Schuessler G, Jakubowski W, Dietrich CF (2010) Quantitative contrast enhanced ultrasound of the liver for time intensity curves—reliability and potential sources of errors. Eur J Radiol 73:153-158PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2012

Authors and Affiliations

  • Ursula Nemec
    • 1
  • Stefan F. Nemec
    • 1
  • Clemens Novotny
    • 2
  • Michael Weber
    • 1
  • Christian Czerny
    • 1
  • Christian R. Krestan
    • 1
  1. 1.Department of RadiologyMedical University ViennaViennaAustria
  2. 2.Department of Nuclear MedicineMedical University ViennaViennaAustria

Personalised recommendations