Advertisement

European Radiology

, Volume 22, Issue 3, pp 642–653 | Cite as

Quantifying differences in hepatic uptake of the liver specific contrast agents Gd-EOB-DTPA and Gd-BOPTA: a pilot study

  • O. Dahlqvist Leinhard
  • N. DahlströmEmail author
  • J. Kihlberg
  • P. Sandström
  • T. B. Brismar
  • Ö. Smedby
  • P. Lundberg
Contrast Media

Abstract

Objectives

To develop and evaluate a procedure for quantifying the hepatocyte-specific uptake of Gd-BOPTA and Gd-EOB-DTPA using dynamic contrast-enhanced (DCE) MRI.

Methods

Ten healthy volunteers were prospectively recruited and 21 patients with suspected hepatobiliary disease were retrospectively evaluated. All subjects were examined with DCE-MRI using 0.025 mmol/kg of Gd-EOB-DTPA. The healthy volunteers underwent an additional examination using 0.05 mmol/kg of Gd-BOPTA. The signal intensities (SI) of liver and spleen parenchyma were obtained from unenhanced and enhanced acquisitions. Using pharmacokinetic models of the liver and spleen, and an SI rescaling procedure, a hepatic uptake rate, K Hep, estimate was derived. The K Hep values for Gd-EOB-DTPA were then studied in relation to those for Gd-BOPTA and to a clinical classification of the patient’s hepatobiliary dysfunction.

Results

K Hep estimated using Gd-EOB-DTPA showed a significant Pearson correlation with K Hep estimated using Gd-BOPTA (r = 0.64; P < 0.05) in healthy subjects. Patients with impaired hepatobiliary function had significantly lower K Hep than patients with normal hepatobiliary function (K Hep = 0.09 ± 0.05 min-1 versus K Hep = 0.24 ± 0.10 min−1; P < 0.01).

Conclusions

A new procedure for quantifying the hepatocyte-specific uptake of T 1-enhancing contrast agent was demonstrated and used to show that impaired hepatobiliary function severely influences the hepatic uptake of Gd-EOB-DTPA.

Key Points

The liver uptake of contrast agents may be measured with standard clinical MRI.

Calculation of liver contrast agent uptake is improved by considering splenic uptake.

Liver function affects the uptake of the liver-specific contrast agent Gd-EOB-DTPA.

Hepatic uptake of two contrast agents (Gd-EOB-DTPA, Gd-BOPTA) is correlated in healthy individuals.

This method can be useful for determining liver function, e.g. before hepatic surgery

Keywords

Gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid Gadobenate Dimeglumine Dynamic contrast-enhanced MRI Pharmacokinetics Liver 

Notes

Acknowledgements

Financial support from the Swedish research council (VR/M 2007–2884), the Medical Research Council of Southeast Sweden (FORSS 12621), and the Linköping University Hospital Research Foundations are gratefully acknowledged. We thank research nurse Annika Hall at the Center for Medical Image Science and Visualization (CMIV) for assistance with volunteer data collection.

References

  1. 1.
    Tsuda N, Okada M, Murakami T (2010) New proposal for the staging of nonalcoholic steatohepatitis: evaluation of liver fibrosis on Gd-EOB-DTPA-enhanced MRI. Eur J Radiol 73:137–142PubMedCrossRefGoogle Scholar
  2. 2.
    Planchamp C, Pastor CM, Balant L, Becker CD, Terrier F, Gex-Fabry M (2005) Quantification of Gd-BOPTA uptake and biliary excretion from dynamic magnetic resonance imaging in rat livers: model validation with 153Gd-BOPTA. Invest Radiol 40(11):705–714PubMedCrossRefGoogle Scholar
  3. 3.
    Spinazzi A, Lorusso V, Pirovano G, Kirchin M (1999) Safety, tolerance, biodistribution, and MR imaging enhancement of the liver with gadobenate dimeglumine: results of clinical pharmacologic and pilot imaging studies in nonpatient and patient volunteers. Acad Radiol 6(5):282–291PubMedCrossRefGoogle Scholar
  4. 4.
    Tsuda N, Okada M, Murakami T (2007) Potential of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) for differential diagnosis of nonalcoholic steatohepatitis and fatty liver in rats using magnetic resonance imaging. Invest Radiol 42(4):242–247. doi: 10.1097/01.rli.0000258058.44876.a5 PubMedCrossRefGoogle Scholar
  5. 5.
    Planchamp C, Gex-Fabry M, Becker CD, Pastor CM (2007) Model-based analysis of Gd-BOPTA-induced MR signal intensity changes in cirrhotic rat livers. Invest Radiol 42(7):513–521. doi: 10.1097/RLI.0b013e318036b450 PubMedCrossRefGoogle Scholar
  6. 6.
    Motosugi U, Ichikawa T, Sou H et al (2009) Liver parenchymal enhancement of hepatocyte-phase images in Gd-EOB-DTPA-enhanced MR imaging: which biological markers of the liver function affect the enhancement? J Magn Reson Imaging 30(5):1042–1046. doi: 10.1002/jmri.21956 PubMedCrossRefGoogle Scholar
  7. 7.
    Motosugi U, Ichikawa T, Tominaga L et al (2009) Delay before the hepatocyte phase of Gd-EOB-DTPA-enhanced MR imaging: is it possible to shorten the examination time? Eur Radiol 19(11):2623–2629. doi: 10.1007/s00330-009-1467-6 PubMedCrossRefGoogle Scholar
  8. 8.
    Yamada A, Hara T, Li F et al (2011) Quantitative Evaluation of Liver Function with Use of Gadoxetate Disodium-enhanced MR Imaging. Radiology. doi: 10.1148/radiol.11100586
  9. 9.
    Jackson A (2004) Analysis of dynamic contrast enhanced MRI. Br J Radiol 77(Spec No 2):S154–166PubMedCrossRefGoogle Scholar
  10. 10.
    Treier R, Steingoetter A, Fried M, Schwizer W, Boesiger P (2007) Optimized and combined T1 and B1 mapping technique for fast and accurate T1 quantification in contrast-enhanced abdominal MRI. Magn Reson Med 57(3):568–576. doi: 10.1002/mrm.21177 PubMedCrossRefGoogle Scholar
  11. 11.
    Huang W, Wang Y, Panicek DM, Schwartz LH, Koutcher JA (2009) Feasibility of using limited-population-based average R10 for pharmacokinetic modeling of osteosarcoma dynamic contrast-enhanced magnetic resonance imaging data. Magn Reson Imaging 27(6):852–858. doi: 10.1016/j.mri.2009.01.020 PubMedCrossRefGoogle Scholar
  12. 12.
    Pugh RN, Murray-Lyon IM, Dawson JL, Pietroni MC, Williams R (1973) Transection of the oesophagus for bleeding oesophageal varices. Br J Surg 60(8):646–649PubMedCrossRefGoogle Scholar
  13. 13.
    Kamath PS, Wiesner RH, Malinchoc M et al (2001) A model to predict survival in patients with end-stage liver disease. Hepatology 33(2):464–470PubMedCrossRefGoogle Scholar
  14. 14.
    de Bazelaire CM, Duhamel GD, Rofsky NM, Alsop DC (2004) MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 230(3):652–659. doi: 10.1148/radiol.2303021331 PubMedCrossRefGoogle Scholar
  15. 15.
    Ernst RR, Anderson WA (1966) Application of fourier transform spectroscopy to magnetic resonance. Review of Scientific Instruments 37(1):93–102CrossRefGoogle Scholar
  16. 16.
    Pintaske J, Martirosian P, Graf H et al (2006) Relaxivity of Gadopentetate Dimeglumine (Magnevist), Gadobutrol (Gadovist), and Gadobenate Dimeglumine (MultiHance) in human blood plasma at 0.2, 1.5, and 3 Tesla. Invest Radiol 41(3):213–221. doi: 10.1097/01.rli.0000197668.44926.f7 PubMedCrossRefGoogle Scholar
  17. 17.
    Levitt DG (2003) The pharmacokinetics of the interstitial space in humans. BMC Clin Pharmacol 3:3. doi: 10.1186/1472-6904-3-3 PubMedCrossRefGoogle Scholar
  18. 18.
    Stricker D (2008) BrightStat.com: free statistics online. Comput Methods Programs Biomed 92(1):135–143. doi: 10.1016/j.cmpb.2008.06.010 PubMedCrossRefGoogle Scholar
  19. 19.
    Thomsen C, Christoffersen P, Henriksen O, Juhl E (1990) Prolonged T1 in patients with liver cirrhosis: an in vivo MRI study. Magn Reson Imaging 8(5):599–604PubMedCrossRefGoogle Scholar
  20. 20.
    Van Lom KJ, Brown JJ, Perman WH, Sandstrom JC, Lee JK (1991) Liver imaging at 1.5 tesla: pulse sequence optimization based on improved measurement of tissue relaxation times. Magn Reson Imaging 9(2):165–171PubMedCrossRefGoogle Scholar
  21. 21.
    Warntjes JB, Leinhard OD, West J, Lundberg P (2008) Rapid magnetic resonance quantification on the brain: optimization for clinical usage. Magn Reson Med 60(2):320–329. doi: 10.1002/mrm.21635 PubMedCrossRefGoogle Scholar
  22. 22.
    Hamm B, Staks T, Muhler A et al (1995) Phase I clinical evaluation of Gd-EOB-DTPA as a hepatobiliary MR contrast agent: safety, pharmacokinetics, and MR imaging. Radiology 195(3):785–792PubMedGoogle Scholar
  23. 23.
    Tajima T, Takao H, Akai H et al (2010) Relationship between liver function and liver signal intensity in hepatobiliary phase of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging. J Comput Assist Tomogr 34(3):362–366. doi: 10.1097/RCT.0b013e3181cd330400004728-201005000-00007 PubMedCrossRefGoogle Scholar
  24. 24.
    Lee MS, Lee JY, Kim SH et al (2011) Gadoxetic acid disodium-enhanced magnetic resonance imaging for biliary and vascular evaluations in preoperative living liver donors: comparison with gadobenate dimeglumine-enhanced MRI. J Magn Reson Imaging 33(1):149–159. doi: 10.1002/jmri.22429 PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2011

Authors and Affiliations

  • O. Dahlqvist Leinhard
    • 1
    • 3
  • N. Dahlström
    • 1
    • 2
    Email author
  • J. Kihlberg
    • 1
    • 2
  • P. Sandström
    • 6
  • T. B. Brismar
    • 4
    • 5
  • Ö. Smedby
    • 1
    • 2
  • P. Lundberg
    • 1
    • 2
    • 3
  1. 1.Center for Medical Image Science and Visualization (CMIV)Linköping UniversityLinköpingSweden
  2. 2.Depts of Radiology, Linköping University and Radiology, UHL County Council of ÖstergötlandLinköpingSweden
  3. 3.Depts of Radiation Physics, Linköping University and Radiation Physics, UHL County Council of ÖstergötlandLinköpingSweden
  4. 4.Department of Clinical Science, Intervention and Technology at Karolinska Institutet, Division of Medical Imaging and TechnologyKarolinska University Hospital in HuddingeStockholmSweden
  5. 5.Department of RadiologyKarolinska University Hospital in HuddingeStockholmSweden
  6. 6.Division of Surgery and Clinical Oncology, Linköping University and Department of Surgery, County Council of ÖstergötlandLinköpingSweden

Personalised recommendations