Advertisement

European Radiology

, Volume 22, Issue 3, pp 569–578 | Cite as

Radiation dose considerations by intra-individual Monte Carlo simulations in dual source spiral coronary computed tomography angiography with electrocardiogram-triggered tube current modulation and adaptive pitch

  • Matthias S. MayEmail author
  • Paul Deak
  • Axel Kuettner
  • Michael M. Lell
  • Wolfgang Wuest
  • Michael Scharf
  • Andrea K. Keller
  • Lothar Häberle
  • Stephan Achenbach
  • Martin Seltmann
  • Michael Uder
  • Willi A. Kalender
Cardiac

Abstract

Objectives

To evaluate radiation dose levels in patients undergoing spiral coronary computed tomography angiography (CTA) on a dual-source system in clinical routine.

Methods

Coronary CTA was performed for 56 patients with electrocardiogram-triggered tube current modulation (TCM) and heart-rate (HR) dependent pitch adaptation. Individual Monte Carlo (MC) simulations were performed for dose assessment. Retrospective simulations with constant tube current (CTC) served as reference. Lung tissue was segmented and used for organ and effective dose (ED) calculation.

Results

Estimates for mean relative ED was 7.1 ± 2.1 mSv/100 mAs for TCM and 12.5 ± 5.3 mSv/100 mAs for CTC (P < 0.001). Relative dose reduction at low HR (≤60 bpm) was highest (49 ± 5%) compared to intermediate (60–70 bpm, 33 ± 12%) and high HR (>70 bpm, 29 ± 12%). However lowest ED is achieved at high HR (5.2 ± 1.5 mSv/100 mAs), compared with intermediate (6.7 ± 1.6 mSv/100 mAs) and low (8.3 ± 2.1 mSv/100 mAs) HR when automated pitch adaptation is applied.

Conclusions

Radiation dose savings up to 52% are achievable by TCM at low and regular HR. However lowest ED is attained at high HR by pitch adaptation despite inferior radiation dose reduction by TCM.

Key Points

Monte Carlo simulations allow for individual radiation dose calculations.

ECG-triggered tube current modulation (TCM) can effectively reduce radiation dose.

Slow and regular heart rates allow for highest dose reductions by TCM.

Adaptive pitch accounts for lowest radiation dose at high heart rates.

Women receive higher effective dose than men undergoing spiral coronary CT-angiography.

Keywords

Dual source computed tomography ECG-pulsing Adaptive pitch Coronary angiography Monte Carlo radiation dose simulation 

Notes

Acknowledgments

We are grateful to Werner Bautz, Katharina Anders and Gerd Muschiol for their support in the clinical investigation and Marcel von Straten for his technical support in running the Monte Carlo simulations and providing the dose estimations. This study was supported by the German Government, Bundesministerium für Bildung und Forschung (01EX1012B, “Spitzencluster Medical Valley”).

References

  1. 1.
    Flohr TG, McCollough CH, Bruder H et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268PubMedCrossRefGoogle Scholar
  2. 2.
    Kerl JM, Schoepf UJ, Zwerner PL et al (2011) Accuracy of coronary artery stenosis detection with CT versus conventional coronary angiography compared with composite findings from both tests as an enhanced reference standard. Eur Radiol 21:1895–1903PubMedCrossRefGoogle Scholar
  3. 3.
    Muenzel D, Noel PB, Dorn F, Dobritz M, Rummeny EJ, Huber A (2011) Step and shoot coronary CT angiography using 256-slice CT: effect of heart rate and heart rate variability on image quality. Eur Radiol. doi: 10.1007/s00330-011-2185-4
  4. 4.
    Moscariello A, Takx RA, Schoepf UJ et al (2011) Coronary CT angiography: image quality, diagnostic accuracy, and potential for radiation dose reduction using a novel iterative image reconstruction technique-comparison with traditional filtered back projection. Eur Radiol 21:2130–2138PubMedCrossRefGoogle Scholar
  5. 5.
    Achenbach S (2006) Computed tomography coronary angiography. J Am Coll Cardiol 48:1919–1928PubMedCrossRefGoogle Scholar
  6. 6.
    Lehmkuhl L, Gosch D, Nagel HD, Stumpp P, Kahn T, Gutberlet M (2010) Quantification of radiation dose savings in cardiac computed tomography using prospectively triggered mode and ECG pulsing: a phantom study. Eur Radiol 20:2116–2125PubMedCrossRefGoogle Scholar
  7. 7.
    Dikkers R, Greuter MJ, Kristanto W et al (2008) Assessment of image quality of 64-row Dual Source versus Single Source CT coronary angiography on heart rate: a phantom study. Eur J Radiol 70:61–68PubMedCrossRefGoogle Scholar
  8. 8.
    Tsiflikas I, Brodoefel H, Reimann AJ et al (2010) Coronary CT angiography with dual source computed tomography in 170 patients. Eur J Radiol 74:161–165PubMedCrossRefGoogle Scholar
  9. 9.
    Achenbach S, Anders K, Kalender WA (2008) Dual-source cardiac computed tomography: image quality and dose considerations. Eur Radiol 18:1188–1198PubMedCrossRefGoogle Scholar
  10. 10.
    Bischoff B, Hein F, Meyer T et al (2009) Impact of a reduced tube voltage on CT angiography and radiation dose: results of the PROTECTION I study. JACC Cardiovasc Imaging 2:940–946PubMedCrossRefGoogle Scholar
  11. 11.
    Paul JF, Abada HT (2007) Strategies for reduction of radiation dose in cardiac multislice CT. Eur Radiol 17:2028–2037PubMedCrossRefGoogle Scholar
  12. 12.
    McCollough CH, Primak AN, Saba O et al (2007) Dose performance of a 64-channel dual-source CT scanner. Radiology 243:775–784PubMedCrossRefGoogle Scholar
  13. 13.
    Jakobs TF, Becker CR, Ohnesorge B et al (2002) Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur Radiol 12:1081–1086PubMedCrossRefGoogle Scholar
  14. 14.
    Ketelsen D, Thomas C, Werner M et al (2010) Dual-source computed tomography: estimation of radiation exposure of ECG-gated and ECG-triggered coronary angiography. Eur J Radiol 73:274–279PubMedCrossRefGoogle Scholar
  15. 15.
    Stolzmann P, Scheffel H, Schertler T et al (2008) Radiation dose estimates in dual-source computed tomography coronary angiography. Eur Radiol 18:592–599PubMedCrossRefGoogle Scholar
  16. 16.
    Kirchhoff S, Herzog P, Johnson T et al (2010) Assessment of radiation exposure on a dual-source computed tomography-scanner performing coronary computed tomography-angiography. Eur J Radiol 74:e181–e185PubMedCrossRefGoogle Scholar
  17. 17.
    Gosling O, Loader R, Venables P, Rowles N, Morgan-Hughes G, Roobottom C (2010) Cardiac CT: are we underestimating the dose? A radiation dose study utilizing the 2007 ICRP tissue weighting factors and a cardiac specific scan volume. Clin Radiol 65:1013–1017PubMedCrossRefGoogle Scholar
  18. 18.
    Weustink AC, Mollet NR, Pugliese F et al (2008) Optimal electrocardiographic pulsing windows and heart rate: effect on image quality and radiation exposure at dual-source coronary CT angiography. Radiology 248:792–798PubMedCrossRefGoogle Scholar
  19. 19.
    Deak P, van Straten M, Shrimpton PC, Zankl M, Kalender WA (2008) Validation of a Monte Carlo tool for patient-specific dose simulations in multi-slice computed tomography. Eur Radiol 18:759–772PubMedCrossRefGoogle Scholar
  20. 20.
    Protection ICoR (1990) ICRP Publication 60: 1990 Recommendations of the ICRP. Annals of the ICRP Volume 21/1–3. International Commission on Radiological ProtectionGoogle Scholar
  21. 21.
    Yushkevich PA, Piven J, Hazlett HC et al (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31:1116–1128PubMedCrossRefGoogle Scholar
  22. 22.
    Kalender WA, Schmidt B, Zankl M, Schmidt M (1999) A PC program for estimating organ dose and effective dose values in computed tomography. Eur Radiol 9:555–562PubMedCrossRefGoogle Scholar
  23. 23.
    Hausleiter J, Meyer T, Hadamitzky M et al (2006) Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation 113:1305–1310PubMedCrossRefGoogle Scholar
  24. 24.
    Ketelsen D, Fenchel M, Buchgeister M et al (2011) Estimation of radiation exposure of different dose saving techniques in 128-slice computed tomography coronary angiography. Eur J Radiol. doi: 10.1016/j.ejrad.2011.01.052
  25. 25.
    Rastenyte D, Tuomilehto J, Moltchanov V, Lindstrom J, Pietinen P, Nissinen A (1997) Association between salt intake, heart rate and blood pressure. J Hum Hypertens 11:57–62PubMedCrossRefGoogle Scholar
  26. 26.
    Leschka S, Stinn B, Schmid F et al (2009) Dual source CT coronary angiography in severely obese patients: trading off temporal resolution and image noise. Invest Radiol 44:720–727PubMedCrossRefGoogle Scholar
  27. 27.
    Burgstahler C, Reimann A, Brodoefel H et al (2009) Quantitative parameters to compare image quality of non-invasive coronary angiography with 16-slice, 64-slice and dual-source computed tomography. Eur Radiol 19:584–590PubMedCrossRefGoogle Scholar
  28. 28.
    Techasith T, Ghoshhajra BB, Truong QA et al (2011) The effect of heart rhythm on patient radiation dose with dual-source cardiac computed tomography. J Cardiovasc Comput Tomogr 5:255–263PubMedGoogle Scholar
  29. 29.
    Rixe J, Rolf A, Conradi G et al (2008) Image quality on dual-source computed-tomographic coronary angiography. Eur Radiol 18:1857–1862PubMedCrossRefGoogle Scholar
  30. 30.
    Kerl JM, Bauer RW, Maurer TB et al (2011) Dose levels at coronary CT angiography—a comparison of Dual Energy-, Dual Source- and 16-slice CT. Eur Radiol 21:530–537PubMedCrossRefGoogle Scholar
  31. 31.
    Duarte R, Bettencourt N, Costa JC, Fernandez G (2010) Coronary computed tomography angiography in a single cardiac cycle with a mean radiation dose of approximately 1 mSv: initial experience. Rev Port Cardiol 29:1667–1676PubMedGoogle Scholar
  32. 32.
    Lell M, Marwan M, Schepis T et al (2009) Prospectively ECG-triggered high-pitch spiral acquisition for coronary CT angiography using dual source CT: technique and initial experience. Eur Radiol 19:2576–2583PubMedCrossRefGoogle Scholar
  33. 33.
    Bischoff B, Hein F, Meyer T et al (2010) Comparison of sequential and helical scanning for radiation dose and image quality: results of the Prospective Multicenter Study on Radiation Dose Estimates of Cardiac CT Angiography (PROTECTION) I Study. AJR Am J Roentgenol 194:1495–1499PubMedCrossRefGoogle Scholar
  34. 34.
    Bastarrika G, Broncano J, Arraiza M et al (2011) Systolic prospectively ECG-triggered dual-source CT angiography for evaluation of the coronary arteries in heart transplant recipients. Eur Radiol 21:1887–1894PubMedCrossRefGoogle Scholar
  35. 35.
    Sun ML, Lu B, Wu RZ et al (2011) Diagnostic accuracy of dual-source CT coronary angiography with prospective ECG-triggering on different heart rate patients. Eur Radiol 21:1635–1642PubMedCrossRefGoogle Scholar
  36. 36.
    Alkadhi H, Stolzmann P, Scheffel H et al (2008) Radiation dose of cardiac dual-source CT: the effect of tailoring the protocol to patient-specific parameters. Eur J Radiol 68:385–391PubMedCrossRefGoogle Scholar
  37. 37.
    Mahabadi AA, Achenbach S, Burgstahler C et al (2010) Safety, efficacy, and indications of beta-adrenergic receptor blockade to reduce heart rate prior to coronary CT angiography. Radiology 257:614–623PubMedCrossRefGoogle Scholar
  38. 38.
    Horiguchi J, Fujioka C, Kiguchi M et al (2009) Prospective ECG-triggered axial CT at 140-kV tube voltage improves coronary in-stent restenosis visibility at a lower radiation dose compared with conventional retrospective ECG-gated helical CT. Eur Radiol 19:2363–2372PubMedCrossRefGoogle Scholar
  39. 39.
    Hausleiter J, Martinoff S, Hadamitzky M et al (2010) Image quality and radiation exposure with a low tube voltage protocol for coronary CT angiography results of the PROTECTION II Trial. JACC Cardiovasc Imaging 3:1113–1123PubMedCrossRefGoogle Scholar
  40. 40.
    Matt D, Scheffel H, Leschka S et al (2007) Dual-source CT coronary angiography: image quality, mean heart rate, and heart rate variability. AJR Am J Roentgenol 189:567–573PubMedCrossRefGoogle Scholar
  41. 41.
    Dewey M, Vavere AL, Arbab-Zadeh A et al (2010) Patient characteristics as predictors of image quality and diagnostic accuracy of MDCT compared with conventional coronary angiography for detecting coronary artery stenoses: CORE-64 Multicenter International Trial. AJR Am J Roentgenol 194:93–102PubMedCrossRefGoogle Scholar
  42. 42.
    Protection ICoR (2007) P103: the 2007 Recommendations of the International Commission on Radiological Protection. Annals of the ICRP. ICRP, pp 37(32–34): p 31–332Google Scholar

Copyright information

© European Society of Radiology 2011

Authors and Affiliations

  • Matthias S. May
    • 1
    Email author
  • Paul Deak
    • 2
  • Axel Kuettner
    • 1
  • Michael M. Lell
    • 1
  • Wolfgang Wuest
    • 1
  • Michael Scharf
    • 1
  • Andrea K. Keller
    • 3
  • Lothar Häberle
    • 3
  • Stephan Achenbach
    • 4
  • Martin Seltmann
    • 4
  • Michael Uder
    • 1
  • Willi A. Kalender
    • 2
  1. 1.Department of RadiologyUniversity of ErlangenErlangenGermany
  2. 2.Department of Medical PhysicsUniversity of ErlangenErlangenGermany
  3. 3.Department of Medical Informatics, Biometry and EpidemiologyUniversity of ErlangenErlangenGermany
  4. 4.Department of CardiologyUniversity of ErlangenErlangenGermany

Personalised recommendations