European Radiology

, Volume 22, Issue 3, pp 672–681 | Cite as

Obesity-related juvenile form of cartilage lesions: a new affliction in the knees of morbidly obese children and adolescents

  • Harald K. Widhalm
  • Stefan Marlovits
  • Goetz H. Welsch
  • Albert Dirisamer
  • Andreas Neuhold
  • Martijn van Griensven
  • Rudolf Seemann
  • Vilmos Vécsei
  • Kurt Widhalm
Magnetic Resonance



Overweight and obesity are afflictions that lead to an increased risk of health problems including joint problems. The aim of the study was to assess the condition of articular cartilage in obese adolescent patients suffering from knee pain.


MRI of 24 knees of 20 morbidly obese patients, mean age 14.2 years, was performed in an open 1.0 Tesla MR system, where the cartilage, the quality and structure of the menisci, and the presence or absence of surrounding changes was examined.


In all patients a cartilage lesion in at least one region of the knee could be detected. Retropatellar cartilage lesions have been found in 19 knees. Ten cartilage lesions grade I, and four lesions grade II have been described in the lateral compartment of the knee, whereas the medial compartment showed in eight cases a grade I, in 13 cases a grade II and in two cases a grade III cartilage lesion. Meniscal changes were assessed in most patients.


Morbidly obese children and adolescents show major abnormalities in the articular cartilage of the knee. Whether obesity alone is the causal factor for the development of the pattern of these changes, remains to be seen.

Key Points

Morbidly obese children and adolescents often suffer from knee pain

Prospective study showed cartilage and meniscal lesions in morbidly obese adolescents

MRI is an adequate tool for assessing cartilage lesions even in morbidly obese patients

It is unclear whether cartilage abnormalities are mainly due to mechanical overload


Magnetic resonance imaging Adolescents Obesity Knee pain Cartilage lesions 



This study is part of a funded project of the Jubilaeumsfonds of the Austrian National Bank, Project number 11977. There was no involvement of other sponsors.


  1. 1.
    Troiano RP, Flegal KM (1998) Overweight children and adolescents: description, epidemiology, and demographics. Pediatrics 101:497–504PubMedGoogle Scholar
  2. 2.
    Ogden CL, Flegal KM, Carroll MD, Johnson CL (2002) Prevalence and trends in overweight among US children and adolescents, 1999–2000. JAMA 288:1728–1732PubMedCrossRefGoogle Scholar
  3. 3.
    Ogden CL, Carroll MD, Curtin LR, McDowell MA, Tabak CJ, Flegal KM (2006) Prevalence of overweight and obesity in the United States, 1999–2004. JAMA 295:1549–1555PubMedCrossRefGoogle Scholar
  4. 4.
    Ogden CL, Carroll MD, Flegal KM (2008) High body mass index for age among US children and adolescents, 2003–2006. JAMA 299:2401–2405PubMedCrossRefGoogle Scholar
  5. 5.
    Lissau I (2004) Overweight and obesity epidemic among children. Answer from European countries. Int J Obes Relat Metab Disord 28(Suppl 3):S10–S15PubMedCrossRefGoogle Scholar
  6. 6.
    Lissau I, Overpeck MD, Ruan WJ, Due P, Holstein BE, Hediger ML (2004) Body mass index and overweight in adolescents in 13 European countries, Israel, and the United States. Arch Pediatr Adolesc Med 158:27–33PubMedCrossRefGoogle Scholar
  7. 7.
    Lobstein T, Frelut ML (2003) Prevalence of overweight among children in Europe. Obes Rev 4:195–200PubMedCrossRefGoogle Scholar
  8. 8.
    Lobstein T, Baur LA (2005) Policies to prevent childhood obesity in the European Union. Eur J Public Health 15:576–579PubMedCrossRefGoogle Scholar
  9. 9.
    Lobstein T, Baur L, Uauy R (2004) Obesity in children and young people: a crisis in public health. Obes Rev 5(Suppl 1):4–104PubMedCrossRefGoogle Scholar
  10. 10.
    Haslam DW, James WP (2005) Obesity. Lancet 366:1197–1209PubMedCrossRefGoogle Scholar
  11. 11.
    Wang Y, Lobstein T (2006) Worldwide trends in childhood overweight and obesity. Int J Pediatr Obes 1:11–25PubMedCrossRefGoogle Scholar
  12. 12.
    Sinha R, Fisch G, Teague B et al (2002) Prevalence of impaired glucose tolerance among children and adolescents with marked obesity. N Engl J Med 346:802–810PubMedCrossRefGoogle Scholar
  13. 13.
    Watanabe S, Yaginuma R, Ikejima K, Miyazaki A (2008) Liver diseases and metabolic syndrome. J Gastroenterol 43:509–518PubMedCrossRefGoogle Scholar
  14. 14.
    Bocca G, Stolk RP, Scheenstra R, Sauer PJ (2008) Non-alcoholic fatty liver disease in children: a new complication of obesity. Ned Tijdschr Geneeskd 152:2443–2447PubMedGoogle Scholar
  15. 15.
    Lavie L (2009) Oxidative stress—a unifying paradigm in obstructive sleep apnea and comorbidities. Prog Cardiovasc Dis 51:303–312PubMedCrossRefGoogle Scholar
  16. 16.
    DiPietro L (1999) Physical activity in the prevention of obesity: current evidence and research issues. Med Sci Sports Exerc 31(Suppl 11):S542–S546PubMedGoogle Scholar
  17. 17.
    Kopelman PG (2000) Obesity as a medical problem. Nature 404:635–643PubMedGoogle Scholar
  18. 18.
    Vuori IM (2001) Dose-response of physical activity and low back pain, osteoarthritis, and osteoporosis. Med Sci Sports Exerc 33(Suppl 6):S551–S586, discussion 609–510PubMedGoogle Scholar
  19. 19.
    Freedman DS, Khan LK, Serdula MK, Dietz WH, Srinivasan SR, Berenson GS (2005) Racial differences in the tracking of childhood BMI to adulthood. Obes Res 13:928–935PubMedCrossRefGoogle Scholar
  20. 20.
    Harris KM, Gordon-Larsen P, Chantala K, Udry JR (2006) Longitudinal trends in race/ethnic disparities in leading health indicators from adolescence to young adulthood. Arch Pediatr Adolesc Med 160:74–81PubMedCrossRefGoogle Scholar
  21. 21.
    Weiss R, Dziura J, Burgert TS et al (2004) Obesity and the metabolic syndrome in children and adolescents. N Engl J Med 350:2362–2374PubMedCrossRefGoogle Scholar
  22. 22.
    Kapiotis S, Holzer G, Schaller G et al (2006) A proinflammatory state is detectable in obese children and is accompanied by functional and morphological vascular changes. Arterioscler Thromb Vasc Biol 26:2541–2546PubMedCrossRefGoogle Scholar
  23. 23.
    Cicuttini F, Spector TD (1998) Obesity, arthritis and gout. Marcel Dekker Inc., New York, pp 741–752Google Scholar
  24. 24.
    Mossberg HO (1989) 40-year follow-up of overweight children. Lancet 2:491–493PubMedCrossRefGoogle Scholar
  25. 25.
    Must A, Spadano J, Coakley EH, Field AE, Colditz G, Dietz WH (1999) The disease burden associated with overweight and obesity. JAMA 282:1523–1529PubMedCrossRefGoogle Scholar
  26. 26.
    Kromeyer-Hauschild KWM, Kunze D, Geller F, Ziegler A, Geiss HC (2001) Perzentilie für den body mass index für das Kindes-u. Jugendalter unter Heranziehung verschiedener deutscher Stichproben. Monatsschrift Kinderheilkunde 8:807–818CrossRefGoogle Scholar
  27. 27.
    Torg JS, Conrad W, Kalen V (1976) Clinical diagnosis of anterior cruciate ligament instability in the athlete. Am J Sports Med 4:84–93PubMedCrossRefGoogle Scholar
  28. 28.
    Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S (2006) Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol 57:16–23PubMedCrossRefGoogle Scholar
  29. 29.
    Flandry F, Hunt JP, Terry GC, Hughston JC (1991) Analysis of subjective knee complaints using visual analog scales. Am J Sports Med 19:112–118PubMedCrossRefGoogle Scholar
  30. 30.
    Roos EM, Roos HP, Ekdahl C, Lohmander LS (1998) Knee injury and Osteoarthritis Outcome Score (KOOS)—validation of a Swedish version. Scand J Med Sci Sports 8:439–448PubMedCrossRefGoogle Scholar
  31. 31.
    Roos EM, Roos HP, Lohmander LS, Ekdahl C, Beynnon BD (1998) Knee Injury and Osteoarthritis Outcome Score (KOOS)—development of a self-administered outcome measure. J Orthop Sports Phys Ther 28:88–96PubMedGoogle Scholar
  32. 32.
    Roos EM, Toksvig-Larsen S (2003) Knee injury and Osteoarthritis Outcome Score (KOOS)—validation and comparison to the WOMAC in total knee replacement. Health Qual Life Outcomes 1:17PubMedCrossRefGoogle Scholar
  33. 33.
    Brismar BH, Wredmark T, Movin T, Leandersson J, Svensson O (2002) Observer reliability in the arthroscopic classification of osteoarthritis of the knee. J Bone Joint Surg Br 84:42–47PubMedCrossRefGoogle Scholar
  34. 34.
    Cameron ML, Briggs KK, Steadman JR (2003) Reproducibility and reliability of the outerbridge classification for grading chondral lesions of the knee arthroscopically. Am J Sports Med 31:83–86PubMedGoogle Scholar
  35. 35.
    Outerbridge RE (1961) The etiology of chondromalacia patellae. J Bone Joint Surg Br 43-B:752–757PubMedGoogle Scholar
  36. 36.
    Potter HG, Linklater JM, Allen AA, Hannafin JA, Haas SB (1998) Magnetic resonance imaging of articular cartilage in the knee. An evaluation with use of fast-spin-echo imaging. J Bone Joint Surg Am 80:1276–1284PubMedGoogle Scholar
  37. 37.
    Stoller DW, Martin C, Crues JV 3rd, Kaplan L, Mink JH (1987) Meniscal tears: pathologic correlation with MR imaging. Radiology 163:731–735PubMedGoogle Scholar
  38. 38.
    Fam AG, Wilson SR, Holmberg S (1982) Ultrasound evaluation of popliteal cysts on osteoarthritis of the knee. J Rheumatol 9:428–434PubMedGoogle Scholar
  39. 39.
    Hill CL, Gale DG, Chaisson CE et al (2001) Knee effusions, popliteal cysts, and synovial thickening: association with knee pain in osteoarthritis. J Rheumatol 28:1330–1337PubMedGoogle Scholar
  40. 40.
    Phan CM, Link TM, Blumenkrantz G et al (2006) MR imaging findings in the follow-up of patients with different stages of knee osteoarthritis and the correlation with clinical symptoms. Eur Radiol 16:608–618PubMedCrossRefGoogle Scholar
  41. 41.
    Anandacoomarasamy A, Smith G, Leibman S et al (2009) Cartilage defects are associated with physical disability in obese adults. Rheumatology (Oxford) 48:1290–1293CrossRefGoogle Scholar
  42. 42.
    Ding C, Cicuttini F, Scott F, Cooley H, Boon C, Jones G (2006) Natural history of knee cartilage defects and factors affecting change. Arch Intern Med 166:651–658PubMedCrossRefGoogle Scholar
  43. 43.
    Ding C, Cicuttini F, Scott F, Cooley H, Jones G (2005) Association between age and knee structural change: a cross sectional MRI based study. Ann Rheum Dis 64:549–555PubMedCrossRefGoogle Scholar
  44. 44.
    Jones G, Ding C, Glisson M, Hynes K, Ma D, Cicuttini F (2003) Knee articular cartilage development in children: a longitudinal study of the effect of sex, growth, body composition, and physical activity. Pediatr Res 54:230–236PubMedCrossRefGoogle Scholar
  45. 45.
    Silberhumer GR, Miller K, Pump A et al (2011) Long-term results after laparoscopic adjustable gastric banding in adolescent patients: follow-up of the Austrian experience. Surg Endosc 25:2993–2999PubMedCrossRefGoogle Scholar
  46. 46.
    Kolarz G, Kotz R, Hochmayer I (2003) Long-term benefits and repeated treatment cycles of intra-articular sodium hyaluronate (Hyalgan) in patients with osteoarthritis of the knee. Semin Arthritis Rheum 32:310–319PubMedCrossRefGoogle Scholar
  47. 47.
    Phiphobmongkol V, Sudhasaneya V (2009) The effectiveness and safety of intra-articular injection of sodium hyaluronate (500–730 kDa) in the treatment of patients with painful knee osteoarthritis. J Med Assoc Thai 92:1287–1294PubMedGoogle Scholar
  48. 48.
    Strand V, Conaghan PG, Lohmander LS et al (2006) An integrated analysis of five double-blind, randomized controlled trials evaluating the safety and efficacy of a hyaluronan product for intra-articular injection in osteoarthritis of the knee. Osteoarthr Cartil 14:859–866PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2011

Authors and Affiliations

  • Harald K. Widhalm
    • 1
  • Stefan Marlovits
    • 1
  • Goetz H. Welsch
    • 2
    • 3
  • Albert Dirisamer
    • 4
  • Andreas Neuhold
    • 5
  • Martijn van Griensven
    • 6
  • Rudolf Seemann
    • 7
  • Vilmos Vécsei
    • 1
  • Kurt Widhalm
    • 8
  1. 1.Center for Joints and Cartilage, Department of TraumatologyMedical University of ViennaViennaAustria
  2. 2.MR Center, Department of RadiologyMedical University of ViennaViennaAustria
  3. 3.Department of Trauma SurgeryUniversity Hospital of ErlangenErlangenGermany
  4. 4.Department of RadiologyMedical University of ViennaViennaAustria
  5. 5.Department of RadiologyPrivate Hospital RudolfinerhausViennaAustria
  6. 6.Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyViennaAustria
  7. 7.Department of Cranio-Maxillofacial and Oral SurgeryMedical University of ViennaViennaAustria
  8. 8.Division of Nutrition and Metabolism, Department of PediatricsMedical University of ViennaViennaAustria

Personalised recommendations