European Radiology

, Volume 22, Issue 2, pp 484–492

Arterial spin labeling MR imaging for characterisation of renal masses in patients with impaired renal function: initial experience

  • Ivan Pedrosa
  • Khashayar Rafatzand
  • Philip Robson
  • Andrew A. Wagner
  • Michael B. Atkins
  • Neil M. Rofsky
  • David C. Alsop



To retrospectively evaluate the feasibility of arterial spin labeling (ASL) magnetic resonance imaging (MRI) for the assessment of vascularity of renal masses in patients with impaired renal function.


Between May 2007 and November 2008, 11/67 consecutive patients referred for MRI evaluation of a renal mass underwent unenhanced ASL-MRI due to moderate-to-severe chronic or acute renal failure. Mean blood flow in vascularised and non-vascularised lesions and the relation between blood flow and final diagnosis of malignancy were correlated with a 2-sided homogeneous variance t-test and the Fisher Exact Test, respectively. A p value <0.05 was considered statistically significant.


Seventeen renal lesions were evaluated in 11 patients (8 male; mean age = 70 years) (range 57–86). The median eGFR was 24 mL/min/1.73 m2 (range 7–39). The average blood flow of 11 renal masses interpreted as ASL-positive (134 +/− 85.7 mL/100 g/min) was higher than that of 6 renal masses interpreted as ASL-negative (20.5 +/− 8.1 mL/100 g/min)(p = 0.015). ASL-positivity correlated with malignancy (n = 3) or epithelial atypia (n = 1) at histopathology or progression at follow up (n = 7).


ASL detection of vascularity in renal masses in patients with impaired renal function is feasible and seems to indicate neoplasia although the technique requires further evaluation.

Key Points

  • Arterial spin labeling may help to characterise renal masses in patients with renal failure

  • Detection of blood flow on ASL in a renal mass supports the presence of a neoplasm

  • Renal masses with high blood-flow levels on ASL seem to progress rapidly


Magnetic resonance imaging Kidney neoplasms Perfusion Renal insufficiency Nephrogenic systemic fibrosis 


  1. 1.
    Bosniak MA (1986) The current radiological approach to renal cysts. Radiology 158:1–10PubMedGoogle Scholar
  2. 2.
    Bosniak MA (1991) The small (less than or equal to 3.0 cm) renal parenchymal tumor: detection, diagnosis, and controversies. Radiology 179:307–317PubMedGoogle Scholar
  3. 3.
    Cowper SE, Robin HS, Steinberg SM, Su LD, Gupta S, LeBoit PE (2000) Scleromyxoedema-like cutaneous diseases in renal-dialysis patients. Lancet 356:1000–1001PubMedCrossRefGoogle Scholar
  4. 4.
    Kuo PH, Kanal E, Abu-Alfa AK, Cowper SE (2007) Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis. Radiology 242:647–649PubMedCrossRefGoogle Scholar
  5. 5.
    American College of Radiology Committee on Drugs and Contrast Media. Manual on contrast media. Version 7, 2010.…/quality_safety/contrast_manual/FullManual.aspx
  6. 6.
    European Medicines Agency. Questions and answers on the review of gadolinium contrast agents. July 1st, 2010. London UKGoogle Scholar
  7. 7.
    Detre JA, Leigh JS, Williams DS, Koretsky AP (1992) Perfusion imaging. Magn Reson Med 23:37–45PubMedCrossRefGoogle Scholar
  8. 8.
    Williams DS, Detre JA, Leigh JS, Koretsky AP (1992) Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A 89:212–216PubMedCrossRefGoogle Scholar
  9. 9.
    Roberts DA, Detre JA, Bolinger L et al (1995) Renal perfusion in humans: MR imaging with spin tagging of arterial water. Radiology 196:281–286PubMedGoogle Scholar
  10. 10.
    Karger N, Biederer J, Lusse S et al (2000) Quantitation of renal perfusion using arterial spin labeling with FAIR-UFLARE. Magn Reson Imag 18:641–647CrossRefGoogle Scholar
  11. 11.
    Martirosian P, Klose U, Mader I, Schick F (2004) FAIR true-FISP perfusion imaging of the kidneys. Magn Reson Med 51:353–361PubMedCrossRefGoogle Scholar
  12. 12.
    De Bazelaire C, Rofsky NM, Duhamel G, Michaelson MD, George D, Alsop DC (2005) Arterial spin labeling blood flow magnetic resonance imaging for the characterization of metastatic renal cell carcinoma(1). Acad Radiol 12:347–357PubMedCrossRefGoogle Scholar
  13. 13.
    de Bazelaire C, Alsop DC, George D et al (2008) Magnetic resonance imaging-measured blood flow change after antiangiogenic therapy with PTK787/ZK 222584 correlates with clinical outcome in metastatic renal cell carcinoma. Clin Canc Res 14:5548–5554CrossRefGoogle Scholar
  14. 14.
    Schor-Bardach R, Alsop DC, Pedrosa I et al (2009) Does arterial spin-labeling MR imaging-measured tumor perfusion correlate with renal cell cancer response to antiangiogenic therapy in a mouse model? Radiology 251:731–742PubMedCrossRefGoogle Scholar
  15. 15.
    Dai W, Garcia D, de Bazelaire C, Alsop DC (2008) Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 60:1488–1497PubMedCrossRefGoogle Scholar
  16. 16.
    Robson PM, Madhuranthakam AJ, Dai W, Pedrosa I, Rofsky NM, Alsop DC (2009) Strategies for reducing respiratory motion artifacts in renal perfusion imaging with arterial spin labeling. Magn Reson Med 61:1374–1387PubMedCrossRefGoogle Scholar
  17. 17.
    Chalela JA, Alsop DC, Gonzalez-Atavales JB, Maldjian JA, Kasner SE, Detre JA (2000) Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke 31:680–687PubMedCrossRefGoogle Scholar
  18. 18.
    Israel GM, Hindman N, Bosniak MA (2004) Evaluation of cystic renal masses: comparison of CT and MR imaging by using the Bosniak classification system. Radiology 231:365–371PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang J, Pedrosa I, Rofsky NM (2003) MR techniques for renal imaging. Radiol Clin North Am 41:877–907PubMedCrossRefGoogle Scholar
  20. 20.
    Pedrosa I, Sun MR, Spencer M et al (2008) MR imaging of renal masses: correlation with findings at surgery and pathologic analysis. Radiographics 28:985–1003PubMedCrossRefGoogle Scholar
  21. 21.
    Bydder M, Larkman DJ, Hajnal JV (2002) Combination of signals from array coils using image-based estimation of coil sensitivity profiles. Magn Reson Med 47:539–548PubMedCrossRefGoogle Scholar
  22. 22.
    Sun MR, Ngo L, Genega EM et al (2009) Renal cell carcinoma: dynamic contrast-enhanced MR imaging for differentiation of tumor subtypes–correlation with pathologic findings. Radiology 250:793–802PubMedCrossRefGoogle Scholar
  23. 23.
    Adey GS, Pedrosa I, Rofsky NM, Sanda MG, DeWolf WC (2008) Lower limits of detection using magnetic resonance imaging for solid components in cystic renal neoplasms. Urology 71:47–51PubMedCrossRefGoogle Scholar
  24. 24.
    Pedrosa I, Chou MT, Ngo L et al (2008) MR classification of renal masses with pathologic correlation. Eur Radiol 18:365–375PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2011

Authors and Affiliations

  • Ivan Pedrosa
    • 1
    • 5
  • Khashayar Rafatzand
    • 1
  • Philip Robson
    • 1
  • Andrew A. Wagner
    • 2
  • Michael B. Atkins
    • 3
  • Neil M. Rofsky
    • 4
  • David C. Alsop
    • 1
  1. 1.Department of RadiologyBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonUSA
  2. 2.Surgery, Division of UrologyBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonUSA
  3. 3.Hematology/OncologyBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonUSA
  4. 4.Departments of RadiologyUniversity of Texas Southwestern Medical CenterDallasUSA
  5. 5.Department of RadiologyUT Southwestern Medical CenterDallasUSA

Personalised recommendations