European Radiology

, Volume 22, Issue 1, pp 251–258

Targeted dual-energy single-source CT for characterisation of urinary calculi: experimental and clinical experience

  • Matthias Eiber
  • Konstantin Holzapfel
  • Markus Frimberger
  • Michael Straub
  • Heike Schneider
  • Ernst J. Rummeny
  • Martin Dobritz
  • Armin Huber
Urogenital

Abstract

Objective

To assess the accuracy of targeted dual-energy single-source multi-detector CT (MDCT) for characterisation of urinary calculi.

Methods

For proof of principle, 71 ex-vivo calculi underwent single-source 256-slice MDCT. Low-dose CT was performed in 154 patients with suspected urinary calculi. In 104 patients with urinary calculi targeted dual-energy imaging within one breath-hold was added. 46 patients with sufficient material for infrared-spectroscopy were analysed. Potential anatomical misregistrations between 80- and 140-kVp-images and HU-values were measured. DEIs (dual-energy-indices) were compared with the standard of reference. Effective doses were calculated.

Results

In 26 of 46 patients no misregistration was present. Mean deviations were 2.7 mm in the z-axis (16 patients) and 4.3 mm in the axial plane (10 patients). The DEIs were 0.018 ± 0.016 for uric acid (UA), 0.035 ± 0.015 for mixed UA and 0.102 ± 0.015 for calcified stones in-vitro and 0.017 ± 0.002 for UA, 0.050 ± 0.019 for mixed UA and 0.122 ± 0.024 for calcified calculi in-vivo. Significant differences were noted among calcium, mixed UA and UA stones (p < 0.05). For the low-dose examination mean effective dose was 3.11 mSv. Targed dual-energy resulted in an extra dose of 1.84 mSv (additional 59.1%).

Conclusion

Targeted dual-energy imaging within one breath-hold is feasible for characterisation of urinary calculi using single-source MDCT allowing minimal anatomical discordance.

Key Points

• Targeted dual-energy single-source CT is feasible for characterizing urinary calculi

Dual Energy Index discriminates between uric-acid and non-uric-acid containing stones

It provides ancillary for decisions about stone removal or metaphylaxis

Keywords

Urinary calculi Single-source multi-detector CT Targeted dual-energy imaging Dual energy index Anatomical misregistration 

References

  1. 1.
    Brown J (2006) Diagnostic and treatment patterns for renal colic in US emergency departments. Int Urol Nephrol 38:87–92PubMedCrossRefGoogle Scholar
  2. 2.
    Smith RC, Rosenfield AT, Choe KA, Essenmacher KR, Verga M, Glickman MG, Lange RC (1995) Acute flank pain: comparison of non-contrast-enhanced CT and intravenous urography. Radiology 194:789–794PubMedGoogle Scholar
  3. 3.
    Boulay I, Holtz P, Foley WD, White B, Begun FP (1999) Ureteral calculi: diagnostic efficacy of helical CT and implications for treatment of patients. AJR Am J Roentgenol 172:1485–1490PubMedGoogle Scholar
  4. 4.
    Tamm EP, Silverman PM, Shuman WP (2003) Evaluation of the patient with flank pain and possible ureteral calculus1. Radiology 228:319–329PubMedCrossRefGoogle Scholar
  5. 5.
    Dalla Palma L, Pozzi-Mucelli R, Stacul F (2001) Present-day imaging of patients with renal colic. Eur Radiol 11:4–17PubMedCrossRefGoogle Scholar
  6. 6.
    Coe FL, Evan A, Worcester E (2005) Kidney stone disease. J Clin Invest 115:2598–2608PubMedCrossRefGoogle Scholar
  7. 7.
    Deveci S, Coşkun M, Tekin MI, Peşkircioglu L, Tarhan NC, Ozkardeş H (2004) Spiral computed tomography: role in determination of chemical compositions of pure and mixed urinary stones–an in vitro study. Urology 64:237–240PubMedCrossRefGoogle Scholar
  8. 8.
    Mostafavi MR, Ernst RD, Saltzman B (1998) Accurate determination of chemical composition of urinary calculi by spiral computerized tomography. J Urol 159:673–675PubMedCrossRefGoogle Scholar
  9. 9.
    Primak AN, Fletcher JG, Vrtiska TJ, Dzyubak OP, Lieske JC, Jackson ME, Williams JC, McCollough CH (2007) Noninvasive differentiation of uric acid versus non-uric acid kidney stones using dual-energy CT. Acad Radiol 14:1441–1447PubMedCrossRefGoogle Scholar
  10. 10.
    Bellin M-F, Renard-Penna R, Conort P, Bissery A, Meric J-B, Daudon M, Mallet A, Richard F, Grenier P (2004) Helical CT evaluation of the chemical composition of urinary tract calculi with a discriminant analysis of CT-attenuation values and density. Eur Radiol 14:2134–2140PubMedCrossRefGoogle Scholar
  11. 11.
    Hillman BJ, Drach GW, Tracey P, Gaines JA (1984) Computed tomographic analysis of renal calculi. AJR Am J Roentgenol 142:549–552PubMedGoogle Scholar
  12. 12.
    Nakada SY, Hoff DG, Attai S, Heisey D, Blankenbaker D, Pozniak M (2000) Determination of stone composition by noncontrast spiral computed tomography in the clinical setting. Urology 55:816–819PubMedCrossRefGoogle Scholar
  13. 13.
    Williams JC, Saw KC, Paterson RF, Hatt EK, McAteer JA, Lingeman JE (2003) Variability of renal stone fragility in shock wave lithotripsy. Urology 61:1092–1096, discussion 1097PubMedCrossRefGoogle Scholar
  14. 14.
    Ngo TC, Assimos DG (2007) Uric Acid nephrolithiasis: recent progress and future directions. Rev Urol 9:17–27PubMedGoogle Scholar
  15. 15.
    Liebman SE, Taylor JG, Bushinsky DA (2007) Uric acid nephrolithiasis. Curr Rheumatol Rep 9:251–257PubMedCrossRefGoogle Scholar
  16. 16.
    Dalrymple NC, Verga M, Anderson KR, Bove P, Covey AM, Rosenfield AT, Smith RC (1998) The value of unenhanced helical computerized tomography in the management of acute flank pain. J Urol 159:735–740PubMedCrossRefGoogle Scholar
  17. 17.
    Yilmaz S, Sindel T, Arslan G, Ozkaynak C, Karaali K, Kabaalioğlu A, Lüleci E (1998) Renal colic: comparison of spiral CT, US and IVU in the detection of ureteral calculi. Eur Radiol 8:212–217PubMedCrossRefGoogle Scholar
  18. 18.
    Motley G, Dalrymple N, Keesling C, Fischer J, Harmon W (2001) Hounsfield unit density in the determination of urinary stone composition. Urology 58:170–173PubMedCrossRefGoogle Scholar
  19. 19.
    Graser A, Johnson T, Bader M, Staehler M, Haseke N, Nikolaou K, Reiser MF, Stief CG, Becker CR (2008) Dual energy CT characterization of urinary calculi: initial in vitro and clinical experience. Invest Radiol 43:112–119PubMedCrossRefGoogle Scholar
  20. 20.
    Engel KJ, Herrmann C, Zeitler G (2008) X-ray scattering in single- and dual-source CT. Med Phys 35:318–332PubMedCrossRefGoogle Scholar
  21. 21.
    Grosjean R, Sauer B, Guerra RM, Daudon M, Blum A, Felblinger J, Hubert J (2008) Characterization of human renal stones with MDCT: advantage of dual energy and limitations due to respiratory motion. AJR 190:720–728PubMedCrossRefGoogle Scholar
  22. 22.
    Brix G, Lechel U, Veit R, Truckenbrodt R, Stamm G, Coppenrath EM, Griebel J, Nagel H-D (2004) Assessment of a theoretical formalism for dose estimation in CT: an anthropomorphic phantom study. Eur Radiol 14:1275–1284PubMedCrossRefGoogle Scholar
  23. 23.
    European Commission. European Guidelines on Quality Criteria for Computed Tomography, Report EUR 16262. Brussels: EC, 1999. p. 1-107Google Scholar
  24. 24.
    Reiser MF, Becker CR, Nikolaou K, Glazer G (eds) (2009) Multislice CT. Springer, BerlinGoogle Scholar
  25. 25.
    Krafft C, Steiner G, Beleites C, Salzer R (2009) Disease recognition by infrared and Raman spectroscopy. J Biophotonics 2:13–28PubMedCrossRefGoogle Scholar
  26. 26.
    Ascenti G, Siragusa C, Racchiusa S, Ielo I, Privitera G, Midili F, Mazziotti S (2010) Stone-targeted dual-energy CT: a new diagnostic approach to urinary calculosis. Am J Roentgenol 195:953–958CrossRefGoogle Scholar
  27. 27.
    Stolzmann P, Leschka S, Scheffel H, Rentsch K, Baumüller S, Desbiolles L, Schmidt B, Marincek B, Alkadhi H (2010) Characterization of urinary stones with dual-energy CT: improved differentiation using a tin filter. Invest Radiol 45:1PubMedCrossRefGoogle Scholar
  28. 28.
    Thomas C, Patschan O, Ketelsen D, Tsiflikas I, Reimann A, Brodoefel H, Buchgeister M, Nagele U, Stenzl A et al (2009) Dual-energy CT for the characterization of urinary calculi: In vitro and in vivo evaluation of a low-dose scanning protocol. Eur Radiol 19:1553–1559PubMedCrossRefGoogle Scholar
  29. 29.
    Stolzmann P, Scheffel H, Rentsch K, Schertler T, Frauenfelder T, Leschka S, Sulser T, Marincek B, Alkadhi H (2008) Dual-energy computed tomography for the differentiation of uric acid stones: ex vivo performance evaluation. Urol Res 36:133–138PubMedCrossRefGoogle Scholar
  30. 30.
    Thomas C, Krauss B, Ketelsen D, Tsiflikas I, Reimann A, Werner M, Schilling D, Hennenlotter J, Claussen CD et al (2010) Differentiation of urinary calculi with dual energy CT: effect of spectral shaping by high energy tin filtration. Invest Radiol 45:393–398PubMedGoogle Scholar
  31. 31.
    Thomas C, Heuschmid M, Schilling D, Ketelsen D, Tsiflikas I, Stenzl A, Claussen CD, Schlemmer H-P (2010) Urinary calculi composed of uric acid, cystine, and mineral salts: differentiation with dual-energy CT at a radiation dose comparable to that of intravenous pyelography. Radiology 257:402–409PubMedCrossRefGoogle Scholar
  32. 32.
    Boll DT, Patil NA, Paulson EK, Merkle EM, Simmons WN, Pierre SA, Preminger GM (2009) Renal stone assessment with dual-energy multidetector CT and advanced postprocessing techniques: improved characterization of renal stone composition–pilot study. Radiology 250:813–820PubMedCrossRefGoogle Scholar
  33. 33.
    Matlaga BR, Kawamoto S, Fishman E (2008) Dual source computed tomography: a novel technique to determine stone composition. Urology 72:1164–1168PubMedCrossRefGoogle Scholar
  34. 34.
    Hamm M, Wawroschek F, Weckermann D, Knöpfle E, Häckel T, Häuser H, Krawczak G, Harzmann R (2001) Unenhanced helical computed tomography in the evaluation of acute flank pain. Eur Urol 39:460–465PubMedCrossRefGoogle Scholar
  35. 35.
    Hamm M, Knöpfle E, Wartenberg S, Wawroschek F, Weckermann D, Harzmann R (2002) Low-dose unenhanced helical computerized tomography for the evaluation of acute flank pain. J Urol 167:1687–1691PubMedCrossRefGoogle Scholar
  36. 36.
    Ramello A, Vitale C, Marangella M (2000) Epidemiology of nephrolithiasis. J Nephrol 13(Suppl 3):S45–50PubMedGoogle Scholar

Copyright information

© European Society of Radiology 2011

Authors and Affiliations

  • Matthias Eiber
    • 1
  • Konstantin Holzapfel
    • 1
  • Markus Frimberger
    • 2
  • Michael Straub
    • 2
  • Heike Schneider
    • 3
  • Ernst J. Rummeny
    • 1
  • Martin Dobritz
    • 1
  • Armin Huber
    • 1
  1. 1.Institute of Radiology, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany
  2. 2.Department of UrologyTechnische Universität MünchenMunichGermany
  3. 3.Institute of Clinical Chemistry and PathobiochemistryTechnische Universität MünchenMunichGermany

Personalised recommendations