European Radiology

, Volume 21, Issue 12, pp 2527–2541 | Cite as

Contrast induced nephropathy: updated ESUR Contrast Media Safety Committee guidelines

  • Fulvio Stacul
  • Aart J. van der Molen
  • Peter Reimer
  • Judith A. W. Webb
  • Henrik S. ThomsenEmail author
  • Sameh K. Morcos
  • Torsten Almén
  • Peter Aspelin
  • Marie-France Bellin
  • Olivier Clement
  • Gertraud Heinz-Peer
  • on behalf of the Contrast Media Safety Committee of European Society of Urogenital Radiology (ESUR)
Contrast Media



The Contrast Media Safety Committee (CMSC) of the European Society of Urogenital Radiology (ESUR) has updated its 1999 guidelines on contrast medium-induced nephropathy (CIN).

Areas covered

Topics reviewed include the definition of CIN, the choice of contrast medium, the prophylactic measures used to reduce the incidence of CIN, and the management of patients receiving metformin.

Key Points

• Definition, risk factors and prevention of contrast medium induced nephropathy are reviewed.

• CIN risk is lower with intravenous than intra-arterial iodinated contrast medium.

• eGFR of 45 ml/min/1.73 m 2 is CIN risk threshold for intravenous contrast medium.

• Hydration with either saline or sodium bicarbonate reduces CIN incidence.

• Patients with eGFR ≥60 ml/min/1.73 m 2 receiving contrast medium can continue metformin normally.


Contrast medium-induced nephropathy Iodine-based contrast media Gadolinium-based contrast media Metformin Renal failure 

MeSH terms

Contrast media Renal insufficiency, chronic Acute kidney injury Iodopyridones Gadolinium Metformin 

Not MeSH but essential

Contrast-induced nephropathy 


  1. 1.
    Morcos SK, Thomsen HS, Webb JAW et al (1999) Contrast-media-induced nephrotoxicity: a consensus report. Eur Radiol 9:1602–1613PubMedGoogle Scholar
  2. 2.
    Thomsen HS, Morcos SK, ESUR Contrast Media Safety Committee (1999) Contrast media and metformin: guidelines to diminish the risk of lactic acidosis in non-insulin-dependent diabetics after administration of contrast media. Eur Radiol 9:738–740PubMedGoogle Scholar
  3. 3.
    Renal adverse reactions to iodinated contrast media (2008) Contrast media safety guidelines of the Contrast Media Safety Committee of the European Society of Urogenital Radiology, version 7.0. Available at: Accessed 6 June 2011
  4. 4.
    McCullough PA, Stacul F, Davidson C et al (2006) Overview. Am J Cardiol 98:2K–4KGoogle Scholar
  5. 5.
    Molitoris BA, Levin A, Warnock DG et al (2007) Improving outcomes from acute kidney injury. J Am Soc Nephrol 18:1992–1994PubMedGoogle Scholar
  6. 6.
    Molitoris BA, Levin A, Warnock DG et al (2007) Improving outcomes of acute kidney injury: report of an initiative. Nat Clin Pract Nephrol 3:439–442PubMedGoogle Scholar
  7. 7.
    Mehta RL, Kellum JA, Shah SV et al (2007) Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11:R31PubMedGoogle Scholar
  8. 8.
    Weisbord SD, Chen H, Stone RA et al (2006) Associations of increases in serum creatinine with mortality and length of hospital stay after coronary angiography. J Am Soc Nephrol 17:2871–2877PubMedGoogle Scholar
  9. 9.
    Solomon RJ, Mehran R, Natarajan MK et al (2009) Contrast-induced nephropathy and long-term adverse events: cause and effect? Clin J Am Soc Nephrol 4:1162–1169PubMedGoogle Scholar
  10. 10.
    Waikar SS, Bonventre JV (2009) Creatinine kinetics and the definition of acute kidney injury. J Am Soc Nephrol 20:672–679PubMedGoogle Scholar
  11. 11.
    Thomsen HS, Morcos SK (2009) Risk of contrast-medium-induced nephropathy in high-risk patients undergoing MDCT—a pooled analysis of two randomized trials. Eur Radiol 19:891–897PubMedGoogle Scholar
  12. 12.
    Reddan D, Laville M, Garovic VD (2009) Contrast-induced nephropathy and its prevention: what do we really know from evidence-based findings? J Nephrol 22:333–351PubMedGoogle Scholar
  13. 13.
    Toprak O (2007) What is the best definition of contrast-induced nephropathy? Ren Fail 29:387–388PubMedGoogle Scholar
  14. 14.
    Davidson CJ, Hlatky M, Morrris KG et al (1989) Cardiovascular and renal toxicity of a nonionic radiographic contrast agent after cardiac catheterization. A prospective trial. Ann Intern Med 110:119–124PubMedGoogle Scholar
  15. 15.
    McCullough PA, Sandberg KR (2003) Epidemiology of contrast-induced nephropathy. Rev Cardiovasc Med 4:53–59Google Scholar
  16. 16.
    Newhouse JH, Kho D, Rao QA, Starren J (2008) Frequency of serum creatinine changes in the absence of iodinated contrast material: implications for studies of contrast nephrotoxicity. AJR Am J Roentgenol 191:376–382PubMedGoogle Scholar
  17. 17.
    Bruce RJ, Djamali A, Shinki K et al (2009) Background fluctuation of kidney function versus contrast-induced nephrotoxicity. AJR Am J Roentgenol 192:711–718PubMedGoogle Scholar
  18. 18.
    Toprak O (2007) Risk markers for contrast-induced nephropathy. Am J Med Sci 334:283–290PubMedGoogle Scholar
  19. 19.
    Thomsen HS, Morcos SK, Members of Contrast Media Safety Committee of European Society of Urogenital Radiology (ESUR) (2005) In which patients should serum creatinine be measured before iodinated contrast medium administration? Eur Radiol 15:749–754PubMedGoogle Scholar
  20. 20.
    Bartholomew BA, Harjai KJ, Dukkipati S et al (2004) Impact of nephropathy after percutaneous coronary intervention and a method for risk stratification. Am J Cardiol 93:1515–1519PubMedGoogle Scholar
  21. 21.
    Brown JR, DeVries JT, Piper WD et al (2008) Serious renal dysfunction after percutaneous coronary interventions can be predicted. Am Heart J 155:260–266PubMedGoogle Scholar
  22. 22.
    McCullough PA, Wolyn R, Rocher LL et al (1997) Acute renal failure after coronary intervention: incidence, risk factors, and relationship to mortality. Am J Med 103:368–375PubMedGoogle Scholar
  23. 23.
    Mehran R, Aymong ED, Nikolsky E et al (2004) A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J Am Coll Cardiol 44:1393–1399PubMedGoogle Scholar
  24. 24.
    Rihal CS, Textor SC, Grill DE et al (2002) Incidence and prognostic importance of acute renal failure after percutaneous coronary intervention. Circulation 105:2259–2264PubMedGoogle Scholar
  25. 25.
    Dangas G, Iakovou I, Nikolsky E et al (2005) Contrast-induced nephropathy after percutaneous coronary interventions in relation to chronic kidney disease and hemodynamic variables. Am J Cardiol 95:13–19PubMedGoogle Scholar
  26. 26.
    Schwartz GJ, Haycock GB, Edelmann CM, Spitzer A (1976) A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 58:259–263PubMedGoogle Scholar
  27. 27.
    Levey AS, Stevens LA, Schmid CH et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612PubMedGoogle Scholar
  28. 28.
    Glassock RJ, Winearls C (2008) The global burden of chronic kidney disease: how valid are the estimates? Nephron Clin Pract 110:c39–c47PubMedGoogle Scholar
  29. 29.
    Delanaye P, Cohen EP (2008) Formula-based estimates of the GFR: equations variable and uncertain. Nephron Clin Pract 110:c48–c54PubMedGoogle Scholar
  30. 30.
    Parfrey PS, Griffiths SM, Barrett BJ et al (1989) Contrast material-induced renal failure in patients with diabetes mellitus, renal insufficiency, or both. A prospective controlled study. New Engl J Med 320:143–149PubMedGoogle Scholar
  31. 31.
    Gruberg L, Mintz GS, Mehran R et al (2000) The prognostic implications of further renal function deterioration within 48 h of interventional coronary procedures in patients with pre-existent chronic renal insufficiency. J Am Coll Cardiol 36:1542–1548PubMedGoogle Scholar
  32. 32.
    Marenzi G, Lauri G, Assanelli E et al (2004) Contrast-induced nephropathy in patients undergoing primary angioplasty for acute myocardial infarction. J Am Coll Cardiol 44:1780–1785PubMedGoogle Scholar
  33. 33.
    Alamartine E, Phayphet M, Thibaudin D et al (2003) Contrast medium-induced acute renal failure and cholesterol embolism after radiological procedures: incidence, risk factors, and compliance with recommendations. Eur J Intern Med 14:426–431PubMedGoogle Scholar
  34. 34.
    Morcos SK (2005) Prevention of contrast media induced nephrotoxicity after angiographic procedures. J Vasc Interv Radiol 16:13–23PubMedGoogle Scholar
  35. 35.
    McCullough PA, Soman SS (2005) Contrast-induced nephropathy. Crit Care Clin 21:261–280PubMedGoogle Scholar
  36. 36.
    Nikolsky E, Mehran R, Lasic Z et al (2005) Low hematocrit predicts contrast-induced nephropathy after percutaneous coronary interventions. Kidney Int 67:706–713PubMedGoogle Scholar
  37. 37.
    McCarthy CS, Becker JA (1992) Multiple myeloma and contrast media. Radiology 183:519–521PubMedGoogle Scholar
  38. 38.
    Preda L, Agazzi A, Raimondi S et al (2011) Effect on renal function of an iso-osmolar contrast agent in patients with monoclonal gammopathies. Eur Radiol 21:63–69PubMedGoogle Scholar
  39. 39.
    Katzberg RW, Lamba R (2009) Contrast-induced nephropathy after intravenous administration: fact or fiction? Radiol Clin North Am 47:789–800PubMedGoogle Scholar
  40. 40.
    Weisbord SD, Mor MK, Resnick AL et al (2008) Incidence and outcomes of contrast-induced AKI following computed tomography. Clin J Am Soc Nephrol 3:1274–1281PubMedGoogle Scholar
  41. 41.
    Kim SM, Cha R, Lee JP et al (2010) Incidence and outcomes of contrast-induced nephropathy after computed tomography in patients with CKD: a quality improvement report. Am J Kidney Dis 55:1018–1025PubMedGoogle Scholar
  42. 42.
    Bauer C, Melamed ML, Hostetter TH (2008) Staging of chronic kidney disease: time for a course correction. J Am Soc Nephrol 19:844–846PubMedGoogle Scholar
  43. 43.
    Glassock RJ (2009) Estimated glomerular filtration rate: time for a performance review? Kidney Int 75:1001–1003PubMedGoogle Scholar
  44. 44.
    Abutaleb N (2007) Why we should sub-divide CKD stage 3 into early (3a) and late (3b) components. Nephrol Dial Transplant 22:2728–2729PubMedGoogle Scholar
  45. 45.
    Barrett BJ, Carlisle EJ (1993) Meta-analysis of the relative nephrotoxicity of high- and low-osmolality iodinated contrast media. Radiology 188:171–178PubMedGoogle Scholar
  46. 46.
    Aspelin P, Aubry P, Fransson SG et al (2003) Nephrotoxic effects in high-risk patients undergoing angiography. New Engl J Med 348:491–499PubMedGoogle Scholar
  47. 47.
    Jo SH, Youn TJ, Koo BK et al (2006) Renal toxicity evaluation and comparison between visipaque (iodixanol) and hexabrix (ioxaglate) in patients with renal insufficiency undergoing coronary angiography: the RECOVER study: a randomized controlled trial. J Am Coll Cardiol 48:924–930PubMedGoogle Scholar
  48. 48.
    Nie B, Cheng WJ, Li YF et al (2008) A prospective, double-blind, randomized, controlled trial on the efficacy and cardiorenal safety of iodixanol vs. iopromide in patients with chronic kidney disease undergoing coronary angiography with or without percutaneous coronary intervention. Catheter Cardiovasc Interv 72:958–965PubMedGoogle Scholar
  49. 49.
    Rudnick MR, Davidson C, Laskey W et al (2008) Nephrotoxicity of iodixanol versus ioversol in patients with chronic kidney disease: the Visipaque Angiography/Interventions with Laboratory Outcomes in Renal Insufficiency (VALOR) Trial. Am Heart J 156:776–782PubMedGoogle Scholar
  50. 50.
    Solomon RJ, Natarajan MK, Doucet S et al (2007) Cardiac Angiography in Renally Impaired Patients (CARE) study: a randomized double-blind trial of contrast-induced nephropathy in patients with chronic kidney disease. Circulation 115:3189–3196PubMedGoogle Scholar
  51. 51.
    Wessely R, Koppara T, Bradaric C et al (2009) Choice of contrast medium in patients with impaired renal function undergoing percutaneous coronary intervention. Circ Cardiovasc Interv 2:430–437PubMedGoogle Scholar
  52. 52.
    Laskey W, Aspelin P, Davidson C et al (2009) Nephrotoxicity of iodixanol versus iopamidol in patients with chronic kidney disease and diabetes mellitus undergoing coronary angiographic procedures. Am Heart J 158:822–828PubMedGoogle Scholar
  53. 53.
    Briguori C, Colombo A, Airoldi F et al (2005) Nephrotoxicity of low-osmolality versus iso-osmolality contrast agents: impact of N-acetylcysteine. Kidney Int 68:2250–2255PubMedGoogle Scholar
  54. 54.
    Chalmers N, Jackson RW (1999) Comparison of iodixanol and iohexol in renal impairment. Br J Radiol 72:701–703PubMedGoogle Scholar
  55. 55.
    Hardiek KJ, Katholi RE, Robbs RS, Katholi CE (2008) Renal effects of contrast media in diabetic patients undergoing diagnostic or interventional coronary angiography. J Diabetes Complications 22:171–177PubMedGoogle Scholar
  56. 56.
    Juergens CP, Winter JP, Nguyen-Do P et al (2009) Nephrotoxic effects of iodixanol and iopromide in patients with abnormal renal function receiving N-acetylcysteine and hydration before coronary angiography and intervention: a randomized trial. Intern Med J 39:25–31PubMedGoogle Scholar
  57. 57.
    Mehran R, Nikolsky E, Kirtane AJ et al (2009) Ionic low-osmolar versus nonionic iso-osmolar contrast media to obviate worsening nephropathy after angioplasty in chronic renal failure patients: the ICON (Ionic versus non-ionic Contrast to Obviate worsening Nephropathy after angioplasty in chronic renal failure patients) study. JACC Cardiovasc Interv 2:415–421PubMedGoogle Scholar
  58. 58.
    Nguyen SA, Suranyi P, Ravenel JG et al (2008) Iso-osmolality versus low-osmolality iodinated contrast medium at intravenous contrast-enhanced CT: effect on kidney function. Radiology 248:97–105PubMedGoogle Scholar
  59. 59.
    Thomsen HS, Morcos SK, Erley CM et al (2008) The ACTIVE Trial: comparison of the effects on renal function of iomeprol-400 and iodixanol-320 in patients with chronic kidney disease undergoing abdominal computed tomography. Invest Radiol 43:170–178PubMedGoogle Scholar
  60. 60.
    Barrett BJ, Katzberg RW, Thomsen HS et al (2006) Contrast-induced nephropathy in patients with chronic kidney disease undergoing computed-tomography: a double-blind comparison of iodixanol and iopamidol. Invest Radiol 41:815–821PubMedGoogle Scholar
  61. 61.
    Carraro M, Malalan F, Antonione R et al (1998) Effects of a dimeric vs a monomeric nonionic contrast medium on renal function in patients with mild to moderate renal insufficiency: a double-blind randomized clinical trial. Eur Radiol 8:144–147PubMedGoogle Scholar
  62. 62.
    Kuhn MJ, Chen N, Sahani DV et al (2008) The PREDICT study: a randomized double-blind comparison of contrast-induced nephropathy after low or isoosmolar contrast agent exposure. AJR Am J Roentgenol 191:151–157PubMedGoogle Scholar
  63. 63.
    Heinrich MC, Häberle L, Müller V et al (2009) Nephrotoxicity of iso-osmolar iodixanol compared with nonionic low-osmolar contrast media: meta-analysis of randomized controlled trials. Radiology 250:68–86PubMedGoogle Scholar
  64. 64.
    Reed M, Meier P, Tamhane UU et al (2009) The relative renal safety of iodixanol compared with low-osmolar contrast media: a meta-analysis of randomized controlled trials. JACC Cardiovasc Interv 2:645–654PubMedGoogle Scholar
  65. 65.
    McCullough PA, Bertrand ME, Brinker JA, Stacul F (2006) A meta-analysis of the renal safety of isosmolar iodixanol compared with low-osmolar contrast media. J Am Coll Cardiol 48:692–699PubMedGoogle Scholar
  66. 66.
    Laskey WK, Jenkins C, Selzer F et al (2007) Volume-to-creatinine clearance ratio: a pharmacokinetically based risk factor for prediction of early creatinine increase after percutaneous coronary intervention. J Am Coll Cardiol 50:584–590PubMedGoogle Scholar
  67. 67.
    Nyman U, Biörk J, Aspelin P, Marenzi G (2008) Contrast medium dose-to-GFR ratio: a measure of systemic exposure to predict contrast-induced nephropathy after percutaneous coronary intervention. Acta Radiol 49:658–667PubMedGoogle Scholar
  68. 68.
    Manske CL, Sprafka JM, Strony JT, Wang Y (1990) Contrast nephropathy in azotemic diabetic patients undergoing coronary angiography. Am J Med 89:615–620PubMedGoogle Scholar
  69. 69.
    Ellis JH, Cohan RH (2009) Prevention of contrast induced nephropathy: an overview. Radiol Clin N Am 47:801–811PubMedGoogle Scholar
  70. 70.
    Stacul F, Adam A, Becker CR et al (2006) Strategies to reduce the risk of contrast-induced nephropathy. Am J Cardiol 98:59K–77KPubMedGoogle Scholar
  71. 71.
    Trivedi HS, Moore H, Nasr S et al (2003) A randomized prospective trial to assess the role of saline hydration on the development of contrast nephrotoxicity. Nephron Clin Pract 93:C29–C34PubMedGoogle Scholar
  72. 72.
    Dussol B, Morange S, Loundoun A et al (2006) A randomized trial of saline hydration to prevent contrast nephropathy in chronic renal failure patients. Nephrol Dial Transplant 21:2120–2126PubMedGoogle Scholar
  73. 73.
    Taylor AJ, Hotchkiss D, Morse RW, McCabe J (1998) PREPARED: Preparation for Angiography in Renal Dysfunction: a randomized trial of inpatient vs outpatient hydration protocols for cardiac catheterization in mild-to-moderate renal dysfunction. Chest 114:1570–1574PubMedGoogle Scholar
  74. 74.
    Mueller C, Buerkle G, Buettner HJ et al (2002) Prevention of contrast media-associated nephropathy: randomized comparison of 2 hydration regimens in 1620 patients undergoing coronary angioplasty. Arch Intern Med 162:329–336PubMedGoogle Scholar
  75. 75.
    Bader BD, Berger ED, Heede MB et al (2004) What is the best hydration regimen to prevent contrast media-induced nephrotoxicity? Clin Nephrol 62:1–7PubMedGoogle Scholar
  76. 76.
    Krasuski RA, Beard BM, Geoghagan JD et al (2003) Optimal timing of hydration to erase contrast-associated nephropathy: the OTHER CAN study. J Invasive Cardiol 15:699–702PubMedGoogle Scholar
  77. 77.
    Joannidis M, Schmid M, Wiedermann CJ (2008) Prevention of contrast media-induced nephropathy by isotonic sodium bicarbonate: a meta-analysis. Wien Klin Wochenschr 120:742–748PubMedGoogle Scholar
  78. 78.
    Merten GJ, Burgess WP, Gray LV et al (2004) Prevention of contrast-induced nephropathy with sodium bicarbonate: a randomized controlled trial. JAMA 291:2328–2334PubMedGoogle Scholar
  79. 79.
    Brar SS, Hiremath S, Dangas G et al (2009) Sodium bicarbonate for the prevention of contrast induced-acute kidney injury: a systematic review and meta-analysis. Clin J Am Soc Nephrol 4:1584–1592PubMedGoogle Scholar
  80. 80.
    Hogan SE, L’allier P, Chetcuti S et al (2008) Current role of sodium bicarbonate-based preprocedural hydration for the prevention of contrast-induced acute kidney injury: a meta-analysis. Am Heart J 156:414–421PubMedGoogle Scholar
  81. 81.
    Meier P, Ko DT, Tamura A et al (2009) Sodium bicarbonate-based hydration prevents contrast-induced nephropathy: a meta-analysis. BMC Med 7:23PubMedGoogle Scholar
  82. 82.
    Navaneethan SD, Singh S, Appasamy S et al (2009) Sodium bicarbonate therapy for prevention of contrast-induced nephropathy: a systematic review and meta-analysis. Am J Kidney Dis 53:617–627PubMedGoogle Scholar
  83. 83.
    Weisbord SD, Palevsky PM (2008) Prevention of contrast-induced nephropathy with volume expansion. Clin J Am Soc Nephrol 3:273–280PubMedGoogle Scholar
  84. 84.
    Biondi-Zoccai GG, Lotrionte M, Abbate A et al (2006) Compliance with QUOROM and quality of reporting of overlapping meta-analyses on the role of acetylcysteine in the prevention of contrast associated nephropathy: case study. BMJ 332:202–209PubMedGoogle Scholar
  85. 85.
    Trivedi H, Nadella R, Szabo A (2010) Hydration with sodium bicarbonate for the prevention of contrast-induced nephropathy: a meta-analysis of randomized controlled trials. Clin Nephrol 74:288–296PubMedGoogle Scholar
  86. 86.
    Tamura A, Goto Y, Miyamoto K et al (2009) Efficacy of single-bolus administration of sodium bicarbonate to prevent contrast-induced nephropathy in patients with mild renal insufficiency undergoing an elective coronary procedure. Am J Cardiol 104:921–925PubMedGoogle Scholar
  87. 87.
    Briguori C, Colombo A, Airoldi F et al (2004) N-Acetylcysteine versus fenoldopam mesylate to prevent contrast agent-associated nephrotoxicity. J Am Coll Cardiol 44:762–765PubMedGoogle Scholar
  88. 88.
    Majumdar SR, Kjellstrand CM, Tymchak WJ et al (2009) Forced euvolemic diuresis with mannitol and furosemide for prevention of contrast-induced nephropathy in patients with CKD undergoing coronary angiography: a randomized controlled trial. Am J Kidney Dis 54:602–609PubMedGoogle Scholar
  89. 89.
    Ng TM, Shurmur SW, SIlver M et al (2006) Comparison of N-acetylcysteine and fenoldopam for preventing contrast-induced nephropathy (CAFCIN). Int J Cardiol 109:322–328PubMedGoogle Scholar
  90. 90.
    Stone GW, McCullough PA, Tumlin JA et al (2003) Fenoldopam mesylate for the prevention of contrast-induced nephropathy: a randomized controlled trial. JAMA 290:2284–2291PubMedGoogle Scholar
  91. 91.
    Attallah N, Yassine L, Musial J et al (2004) The potential role of statins in contrast nephropathy. Clin Nephrol 62:273–278PubMedGoogle Scholar
  92. 92.
    Boscheri A, Weinbrenner C, Botzek B et al (2007) Failure of ascorbic acid to prevent contrast-media induced nephropathy in patients with renal dysfunction. Clin Nephrol 68:279–286PubMedGoogle Scholar
  93. 93.
    Briguori C, Airoldi F, D’Andrea D et al (2007) Renal Insufficiency Following Contrast Media Administration Trial (REMEDIAL): a randomized comparison of 3 preventive strategies. Circulation 115:1211–1217PubMedGoogle Scholar
  94. 94.
    Ix JH, McCulloch CE, Chertow GM (2004) Theophylline for the prevention of radiocontrast nephropathy: a meta-analysis. Nephrol Dial Transplant 19:2747–2753PubMedGoogle Scholar
  95. 95.
    Huber W, Eckel F, Hennig M et al (2006) Prophylaxis of contrast material-induced nephropathy in patients in intensive care: acetylcysteine, theophylline, or both? A randomized study. Radiology 239:793–804PubMedGoogle Scholar
  96. 96.
    Jo SH, Koo BK, Park JS et al (2008) Prevention of radiocontrast medium-induced nephropathy using short-term high-dose simvastatin in patients with renal insufficiency undergoing coronary angiography (PROMISS) trial—a randomized controlled study. Am Heart J 155:499.e1–499.e8Google Scholar
  97. 97.
    Kelly AM, Dwamena B, Cronin P et al (2008) Meta-analysis: effectiveness of drugs for preventing contrast-induced nephropathy. Ann Intern Med 148:284–294PubMedGoogle Scholar
  98. 98.
    Khanal S, Attallah N, Smith DE et al (2005) Statin therapy reduces contrast-induced nephropathy: an analysis of contemporary percutaneous interventions. Am J Med 118:843–849PubMedGoogle Scholar
  99. 99.
    Patti G, Nusca A, Chello M et al (2008) Usefulness of statin pretreatment to prevent contrast-induced nephropathy and to improve long-term outcome in patients undergoing percutaneous coronary intervention. Am J Cardiol 101:279–285PubMedGoogle Scholar
  100. 100.
    Spargias K, Adreanides E, Demerouti E et al (2009) Iloprost prevents contrast-induced nephropathy in patients with renal dysfunction undergoing coronary angiography or intervention. Circulation 120:1793–1799PubMedGoogle Scholar
  101. 101.
    Spargias K, Alexopoulos E, Kyrzopoulos S et al (2004) Ascorbic acid prevents contrast-mediated nephropathy in patients with renal dysfunction undergoing coronary angiography or intervention. Circulation 110:2837–2842PubMedGoogle Scholar
  102. 102.
    Tepel M, van der Giet M, Schwarzfeld C et al (2000) Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. New Engl J Med 343:180–184PubMedGoogle Scholar
  103. 103.
    Azmus AD, Gottschall C, Manica A et al (2005) Effectiveness of acetylcysteine in prevention of contrast nephropathy. J Invasive Cardiol 17:80–84PubMedGoogle Scholar
  104. 104.
    Briguori C, Manganelli F, Scarpato P et al (2002) Acetylcysteine and contrast agent-associated nephrotoxicity. J Am Coll Cardiol 40:298–303PubMedGoogle Scholar
  105. 105.
    Briguori C, Colombo A, Violante A et al (2004) Standard vs double dose of N-acetylcysteine to prevent contrast agent associated nephrotoxicity. Eur Heart J 25:206–211PubMedGoogle Scholar
  106. 106.
    Kay J, Chow WH, Chan TM et al (2003) Acetylcysteine for prevention of acute deterioration of renal function following elective coronary angiography and intervention: a randomized controlled trial. JAMA 289:553–558PubMedGoogle Scholar
  107. 107.
    Marenzi G, Assanelli E, Marana I et al (2006) N-acetylcysteine and contrast-induced nephropathy in primary angioplasty. New Engl J Med 354:2773–2782PubMedGoogle Scholar
  108. 108.
    Webb JG, Pate GE, Humphries KH et al (2004) A randomized controlled trial of intravenous N-acetylcysteine for the prevention of contrast-induced nephropathy after cardiac catheterization: lack of effect. Am Heart J 148:422–429PubMedGoogle Scholar
  109. 109.
    Trivedi H, Daram S, Szabo A et al (2009) High-dose N-acetylcysteine for the prevention of contrast-induced nephropathy. Am J Med 122:874.e9–874.e15Google Scholar
  110. 110.
    Fishbane S (2008) N-acetylcysteine in the prevention of contrast-induced nephropathy. Clin J Am Soc Nephrol 3:281–287PubMedGoogle Scholar
  111. 111.
    Gonzales DA, Norsworthy KJ, Kern SJ et al (2007) A meta-analysis of N-acetylcysteine in contrast-induced nephrotoxicity: unsupervised clustering to resolve heterogeneity. BMC Med 5:32PubMedGoogle Scholar
  112. 112.
    Pannu N, Wiebe N, Tonelli M (2006) Prophylaxis strategies for contrast-induced nephropathy. JAMA 295:2765–2779PubMedGoogle Scholar
  113. 113.
    Sinert R, Doty CI (2007) Evidence-based emergency medicine review. Prevention of contrast-induced nephropathy in the emergency department. Ann Emerg Med 50:335–345PubMedGoogle Scholar
  114. 114.
    Zagler A, Azadpour M, Mercado C, Hennekens CH (2006) N-acetylcysteine and contrast-induced nephropathy: a meta-analysis of 13 randomized trials. Am Heart J 151:140–145PubMedGoogle Scholar
  115. 115.
    Bagshaw SM, McAlister FA, Manns BJ, Ghali WA (2006) Acetylcysteine in the prevention of contrast-induced nephropathy: a case study of the pitfalls in the evolution of evidence. Arch Intern Med 166:161–166PubMedGoogle Scholar
  116. 116.
    Van Praet JT, De Vriese AS (2007) Prevention of contrast-induced nephropathy: a critical review. Curr Opin Nephrol Hypertens 16:336–347PubMedGoogle Scholar
  117. 117.
    Vaitkus PT, Brar C (2007) N-acetylcysteine in the prevention of contrast-induced nephropathy: publication bias perpetuated by meta-analyses. Am Heart J 153:275–280PubMedGoogle Scholar
  118. 118.
    Hoffmann U, Fischereder M, Krueger B et al (2004) The value of N-acetylcysteine in the prevention of radiocontrast agent-induced nephropathy seems questionable. J Am Soc Nephrol 15:407–410PubMedGoogle Scholar
  119. 119.
    Poletti PA, Saudan P, Platon A et al (2007) I.v. N-acetylcysteine and emergency CT: use of serum creatinine and cystatin C as markers of radiocontrast nephrotoxicity. AJR Am J Roentgenol 189:687–692PubMedGoogle Scholar
  120. 120.
    Haase M, Haase-Fielitz A, Ratnaike S et al (2008) N-Acetylcysteine does not artifactually lower plasma creatinine concentration. Nephrol Dial Transplant 23:1581–1587PubMedGoogle Scholar
  121. 121.
    Morcos SK, Thomsen HS, Webb JA et al (2002) Dialysis and contrast media. Eur Radiol 12:3026–3030PubMedGoogle Scholar
  122. 122.
    Marenzi G, Lauri G, Campodonico J et al (2006) Comparison of two hemofiltration protocols for prevention of contrast-induced nephropathy in high-risk patients. Am J Med 119:155–162PubMedGoogle Scholar
  123. 123.
    Marenzi G, Marana I, Lauri G et al (2003) The prevention of radiocontrast-agent-induced nephropathy by hemofiltration. New Engl J Med 349:1333–1340PubMedGoogle Scholar
  124. 124.
    Naughton CA (2008) Drug-induced nephrotoxicity. Am Fam Physician 78:743–750PubMedGoogle Scholar
  125. 125.
    Pannu N, Nadim MK (2008) An overview of drug-induced acute kidney injury. Crit Care Med 36(4 Suppl):S216–S223PubMedGoogle Scholar
  126. 126.
    Fishman EK, Reddan D (2008) What are radiologists doing to prevent contrast-induced nephropathy (CIN) compared with measures supported by current evidence? A survey of European radiologists on CIN associated with computed tomography. Acta Radiol 49:310–320PubMedGoogle Scholar
  127. 127.
    Reddan D, Fishman EK (2008) Radiologists’ knowledge and perceptions of the impact of contrast-induced nephropathy and its risk factors when performing computed tomography examinations: a survey of European radiologists. Eur J Radiol 66:235–245PubMedGoogle Scholar
  128. 128.
    Briguori C, Colombo A, Airoldi F et al (2006) Gadolinium-based contrast agents and nephrotoxicity in patients undergoing coronary artery procedures. Catheter Cardiovasc Interv 67:175–180PubMedGoogle Scholar
  129. 129.
    Elmsthåhl B, Nyman U, Leander P et al (2004) Gadolinium contrast media are more nephrotoxic than a low osmolar iodine medium employing doses with equal X-ray attenuation in renal arteriography: an experimental study in pigs. Acad Radiol 11:1219–1228Google Scholar
  130. 130.
    Erley CM, Bader BD, Berger ED et al (2004) Gadolinium-based contrast media compared with iodinated media for digital subtraction angiography in azotaemic patients. Nephrol Dial Transplant 19:2526–2531PubMedGoogle Scholar
  131. 131.
    Thomsen HS, Almèn T, Morcos SK et al (2002) Gadolinium-containing contrast media for radiographic examinations: a position paper. Eur Radiol 12:2600–2605PubMedGoogle Scholar
  132. 132.
    Arsenault TM, King BF, Marsh JW Jr et al (1996) Systemic gadolinium toxicity in patients with renal insufficiency and renal failure: retrospective analysis of an initial experience. Mayo Clin Proc 71:1150–1154PubMedGoogle Scholar
  133. 133.
    Zhang HL, Ersoy H, Prince MR (2006) Effects of gadopentetate dimeglumine and gadodiamide on serum calcium, magnesium, and creatinine measurements. J Magn Reson Imag 23:383–387Google Scholar
  134. 134.
    Hoffmann U, Fischereder M, Reil A et al (2005) Renal effects of gadopentetate dimeglumine in patients with normal and impaired renal function. Eur J Med Res 10:149–154PubMedGoogle Scholar
  135. 135.
    Prince MR, Arnoldus C, Frisoli JK (1996) Nephrotoxicity of high-dose gadolinium compared with iodinated contrast. J Magn Reson Imag 6:162–166Google Scholar
  136. 136.
    Tombach B, Bremer C, Reimer P et al (2001) Renal tolerance of a neutral gadolinium chelate (gadobutrol) in patients with chronic renal failure: results of a randomized study. Radiology 218:651–657PubMedGoogle Scholar
  137. 137.
    Sam AD II, Morasch MD, Collins J et al (2003) Safety of gadolinium contrast angiography in patients with chronic renal insufficiency. J Vasc Surg 38:313–318PubMedGoogle Scholar
  138. 138.
    Ergun I, Keven K, Uruc I et al (2006) The safety of gadolinium in patients with stage 3 and 4 renal failure. Nephrol Dial Transplant 21:697–700PubMedGoogle Scholar
  139. 139.
    Akgun H, Gonlusen G, Cartwright J et al (2006) Are gadolinium-based contrast media nephrotoxic? A renal biopsy study. Arch Pathol Lab Med 130:1354–1357PubMedGoogle Scholar
  140. 140.
    Thomsen HS (2004) Gadolinium-based contrast media may be nephrotoxic even at approved doses. Eur Radiol 14:1654–1656PubMedGoogle Scholar
  141. 141.
    Bolen S, Feldman L, Vassy J et al (2007) Systematic review: comparative effectiveness and safety of oral medications for type 2 diabetes. Ann Intern Med 147:386–399PubMedGoogle Scholar
  142. 142.
    NICE Clinical Guideline. CG 87 Type 2 diabetes—newer agents (a partial update of CG 66): short guideline; Updated 18 June 2009 (2009) Available at Accessed 24 November 2010
  143. 143.
    Bailey CJ, Turner RC (1996) Metformin. New Engl J Med 334:574–579PubMedGoogle Scholar
  144. 144.
    Electronic Medicines Compendium: Glucophage SR. Updated 25 August 2009 (2009) Available at Accessed 24 November 2010
  145. 145.
    Stang M, Wysowski DK, Butler-Jones D (1999) Incidence of lactic acidosis in metformin users. Diabetes Care 22:925–927PubMedGoogle Scholar
  146. 146.
    Salpeter S, Greyber E, Pasternak G, Salpeter EE (2010) Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev CD002967Google Scholar
  147. 147.
    Cryer DR, Nicholas SP, Henry DH et al (2005) Comparative outcomes study of metformin intervention versus conventional approach the COSMIC approach study. Diabetes Care 28:539–543PubMedGoogle Scholar
  148. 148.
    Sambol NC, Chiang J, Lin ET et al (1995) Kidney function and age are both predictors of pharmacokinetics of metformin. J Clin Pharmacol 35:1094–1102PubMedGoogle Scholar
  149. 149.
    Sirtori CR, Pasik C (1994) Re-evaluation of a biguanide, metformin: mechanism of action and tolerability. Pharmacol Res 30:187–228PubMedGoogle Scholar
  150. 150.
    Electronic Medicines Compendium: Glucophage. Updated 12 October 2010 (2010) Available at Accessed 24 November 2010
  151. 151.
    Holstein A, Stumvoll M (2005) Contraindications can damage your health—is metformin a case in point? Diabetologia 48:2454–2459PubMedGoogle Scholar
  152. 152.
    Shaw JS, Wilmot RL, Kilpatrick ES (2007) Establishing pragmatic estimated GFR thresholds to guide metformin prescribing. Diabet Med 24:1160–1163PubMedGoogle Scholar
  153. 153.
    Warren RE, Strachan MWJ, Wild S, McKnight JA (2007) Introducing glomerular filtration rate (eGFR) into clinical practice in the UK: implications for the use of metformin. Diabet Med 24:494–497PubMedGoogle Scholar
  154. 154.
    McCullough PA, Stacul F, Becker CR et al (2006) Contrast-Induced Nephropathy (CIN) Consensus Working Panel: executive summary. Rev Cardiovasc Med 7:177–197PubMedGoogle Scholar
  155. 155.
    Rudnick MR, Goldfarb S, Wexler L et al (1995) Nephrotoxicity of ionic and non-ionic contrast media in 1196 patients: a randomised trial. Kidney Int 47:254–261PubMedGoogle Scholar
  156. 156.
    Goergen SK, Rumbold G, Compton G, Harris C (2010) Systematic review of current guidelines, and their evidence base, on risk of lactic acidosis after administration of contrast medium for patients receiving metformin. Radiology 254:261–269PubMedGoogle Scholar
  157. 157.
    Thomsen HS, Morcos SK, Almen T et al (2010) Metformin and contrast media. (Letter) Radiology 256:672–673PubMedGoogle Scholar
  158. 158.
    Gupta R (2002) Use of contrast agents in patients receiving metformin. (Letter) Radiology 225:311–312PubMedGoogle Scholar
  159. 159.
    Bettman MA (2002) Use of intravenous contrast agents in patients receiving metformin. (Letter) Radiology 225:312Google Scholar

Copyright information

© European Society of Radiology 2011

Authors and Affiliations

  • Fulvio Stacul
    • 1
  • Aart J. van der Molen
    • 2
  • Peter Reimer
    • 3
  • Judith A. W. Webb
    • 4
  • Henrik S. Thomsen
    • 6
    • 5
    Email author
  • Sameh K. Morcos
    • 7
  • Torsten Almén
    • 8
  • Peter Aspelin
    • 9
  • Marie-France Bellin
    • 10
  • Olivier Clement
    • 11
  • Gertraud Heinz-Peer
    • 12
  • on behalf of the Contrast Media Safety Committee of European Society of Urogenital Radiology (ESUR)
  1. 1.S.C. Radiologia Ospedale MaggioreTiesteItaly
  2. 2.Department of Radiology -C2-SLeiden University Medical CenterLeidenHolland
  3. 3.Radiology, Klinikum KarlsruheAcademic Teaching Hospital of the University of FreiburgKarlsruheGermany
  4. 4.Department of Radiology, St. Bartholomew’s HospitalUniversity of LondonLondonUnited Kingdom
  5. 5.Department of Diagnostic Radiology 54E2Copenhagen University Hospital at HerlevHerlevDenmark
  6. 6.Department of Diagnostic Sciences, Faculty of Health SciencesUniversity of CopenhagenCopenhagen NDenmark
  7. 7.Department of Diagnostic ImagingNorthern General HospitalSheffieldUnited Kingdom
  8. 8.FalsterboSweden
  9. 9.Department of RadiologyKarolinska Universitets sjukhusHuddingeSweden
  10. 10.Service de Radiologie Générale AdultesHôpital de Bicêtre, Secteur Paul BrocaLe Kremlin-Bicêtre CedexFrance
  11. 11.Service de RadiologieHöpital Européen Georges PompidouParisFrance
  12. 12.Department of RadiologyUniversity Hospital Vienna, AKHViennaAustria

Personalised recommendations