Advertisement

European Radiology

, Volume 21, Issue 12, pp 2604–2617 | Cite as

Diagnosis of bone metastases: a meta-analysis comparing 18FDG PET, CT, MRI and bone scintigraphy

  • Hui-Lin YangEmail author
  • Tao Liu
  • Xi-Ming Wang
  • Yong Xu
  • Sheng-Ming Deng
Musculoskeletal

Abstract

Objective

To perform a meta-analysis to compare 18FDG PET, CT, MRI and bone scintigraphy (BS) for the diagnosis of bone metastases.

Methods

Databases including MEDLINE and EMBASE were searched for relevant original articles published from January 1995 to January 2010. Software was used to obtain pooled estimates of sensitivity, specificity and summary receiver operating characteristic curves (SROC).

Results

67 articles consisting of 145 studies fulfilled all inclusion criteria. On per-patient basis, the pooled sensitivity estimates for PET, CT, MRI and BS were 89.7%, 72.9%, 90.6% and 86.0% respectively. PET=MRI>BS>CT. (“=”indicated no significant difference, P > 0.05; “>” indicated significantly higher, P < 0.05). The pooled specificity estimates for PET, CT, MRI and BS were 96.8%, 94.8%, 95.4% and 81.4% respectively. PET = CT = MRI>BS. On per-lesion basis, the pooled sensitivity estimates for PET, CT, MRI and BS were 86.9%, 77.1%, 90.4% and 75.1% respectively. PET = MRI>BS>CT. The pooled specificity estimates for PET, CT, MRI and BS were 97.0%, 83.2%, 96.0% and 93.6% respectively. PET>MRI>BS>CT.

Conclusion

PET and MRI were found to be comparable and both significantly more accurate than CT and BS for the diagnosis of bone metastases.

Keywords

Bone metastases PET MRI Bone scintigraphy Meta-analysis 

References

  1. 1.
    Even-Sapir E (2005) Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities. J Nucl Med 46:1356–1367PubMedGoogle Scholar
  2. 2.
    Padhani A, Husband J (1998) Bone metastases. In: Husband JES, Reznek RH (eds) Imaging in oncology. Isis Medical Media Ltd, Oxford, pp 765–787Google Scholar
  3. 3.
    Rubens RD (1998) Bone metastases: the clinical problem. Eur J Cancer 34:210–213PubMedCrossRefGoogle Scholar
  4. 4.
    Rybak LD, Rosenthal DI (2001) Radiological imaging for the diagnosis of bone metastases. Q J Nucl Med 45:53–64PubMedGoogle Scholar
  5. 5.
    Hamaoka T, Madewell JE, Podoloff DA et al (2004) Ueno NT. Bone imaging in metastatic breast cancer. J Clin Oncol 22:2942–2953PubMedCrossRefGoogle Scholar
  6. 6.
    Roodman GD (2001) Biology of osteoclast activation in cancer. J Clin Oncol 19:3562–3571PubMedGoogle Scholar
  7. 7.
    Van Houwelingen HC, Zwinderman KH, Stijnen T (1993) A bivariate approach to meta-analysis. Stat Med 12:2273–2284PubMedCrossRefGoogle Scholar
  8. 8.
    Van Houwelingen HC, Arends LR, Stijnen T (2002) Advanced methods in meta-analysis: multivariate approach and meta-regression. Stat Med 21:589–624PubMedCrossRefGoogle Scholar
  9. 9.
    Deville WL, Bezemer PD, Bouter LM (2000) Publications on diagnostic test evaluation in family medicine journals: an optimal search strategy. J Clin Epidemiol 53:65–69PubMedCrossRefGoogle Scholar
  10. 10.
    Berlin JA (1997) Does blinding of readers affect the results of meta-analyses? University of Pennsylvania Meta-analysis Blinding Study Group. Lancet 350:185–186PubMedCrossRefGoogle Scholar
  11. 11.
    Whiting P, Rutjes AW, Reitsma JB et al (2003) The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Meth 3:25CrossRefGoogle Scholar
  12. 12.
    Moses LE, Shapiro D, Littenberg B (1993) Combining independent studies of a diagnostic test into a summary ROC curve: data-analytic approaches and some additional considerations. Stat Med 12:1293–1316PubMedGoogle Scholar
  13. 13.
    Zamora J, Abraira V, Muriel A et al (2006) Meta-DiSc: a software for meta-analysis of test accuracy data. BMC Med Res Meth 6:31CrossRefGoogle Scholar
  14. 14.
    Eustace S, Tello R, Carey J et al (1997) A comparison of whole-body turbostir MR imaging and planar 99 m Tc-Methylene Diphosphonate Scintigraphy in the examination of patients with suspected skeletal metastasis. Am J Roentgenol 169:1655–1661Google Scholar
  15. 15.
    Bury T, Barreto A, Daenen F et al (1998) Fluorine-18 deoxyglucose positron emission tomography for the detection of bone metastases in patients with non-small cell lung cancer. Eur J Nucl Med 25:1244–1247PubMedCrossRefGoogle Scholar
  16. 16.
    Gibril F, Doppman JL, Reynolds JC et al (1998) Bone metastases in patients with gastrinomas: a prospective study of bone scanning, somatostatin receptor scanning, and magnetic resonance image in their detection, frequency, location, and effect of their detection on management. J Clin Oncol 16:1040–1053PubMedGoogle Scholar
  17. 17.
    Schirrmeister H, Guhlmann A, Elsner K et al (1999) Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18 F-PET. J Nucl Med 40:1623–1629PubMedGoogle Scholar
  18. 18.
    Yip CH, Paramsothy M (1999) Value of routine 99mTc-MDP bone scintigraphy in the detection of occult skeletal metastases in women with primary breast cancer. Breast 8:267–269PubMedCrossRefGoogle Scholar
  19. 19.
    Lebtahi R, Cadiot G, Delahaye N et al (1999) Detection of bone metastases in patients with endocrine gastroenteropancreatic tumors: bone scintigraphy compared with somatostatin receptor scintigraphy. J Nucl Med 40:1602–1608PubMedGoogle Scholar
  20. 20.
    Moog F, Kotzerke J, Reske SN (1999) FDG PET can replace bone scintigraphy in primary staging of malignant lymphoma. J Nucl Med 40:1407–1413PubMedGoogle Scholar
  21. 21.
    Schirrmeister H, Guhlmann A, Kotzerke J et al (1999) Early detection and accurate description of extent of metastatic bone disease in breast cancer with fluoride ion and positron emission tomography. J Clin Oncol 17:2381–2389PubMedGoogle Scholar
  22. 22.
    Earnest F, Ryu JH, Miller GM et al (1999) Suspected non-small cell lung cancer: incidence of occult brain and skeletal metastases and effectiveness of imaging for detection - pilot study. Radiology 211:137–145PubMedGoogle Scholar
  23. 23.
    Layer G, Steudel A, Schuller H et al (1999) Magnetic resonance imaging to detect bone marrow metastases in the initial staging of small cell lung carcinoma and breast carcinoma. Cancer 85:1004–1009PubMedCrossRefGoogle Scholar
  24. 24.
    Schirrmeister H, Glatting G, Hetzel J et al (2001) Prospective evaluation of the clinical value of planar bone scans, SPECT, and 18 F-Labeled NaF PET in newly diagnosed lung cancer. J Nucl Med 42:1800–1804PubMedGoogle Scholar
  25. 25.
    Koga S, Tsuda S, Nishikido M et al (2001) The diagnostic value of bone scan in patents with renal cell carcinoma. J Urology 166:2126–2128CrossRefGoogle Scholar
  26. 26.
    Altehoefer C, Ghanem N, Hogerle S et al (2001) Comparative detectability of bone metastases and impact on therapy of magnetic resonance imaging and bone scintigraphy in patients with breast cancer. Eur J Radiol 40:16–23PubMedCrossRefGoogle Scholar
  27. 27.
    Ohta M, Tokuda Y, Suzuki Y et al (2001) Whole body PET for the evaluation of bony metastases in patients with breast cancer: comparison with 99Tcm-MDP bone scintigraphy. Nucl Med Commun 22:875–879PubMedCrossRefGoogle Scholar
  28. 28.
    Savelli G, Maffioli L, Maccauro M et al (2001) Bone scintigraphy and the added value of SPECT (single photon emission tomography) in detecting skeletal lesions. Q J Nucl Med 45:27–37PubMedGoogle Scholar
  29. 29.
    Buchmann I, Reinhardt M, Elsner K et al (2001) 2-(Fluorine-18)Fluoro-2-Deoxy-D-Glucose positron emission tomography in the detection and staging of malignant lymphoma: a bicenter trial. Cancer 91:889–899PubMedCrossRefGoogle Scholar
  30. 30.
    Wu HC, Yen RF, Shen YY et al (2002) Comparing whole body 18 F-2-deoxyglucose positron emission tomography and technetium-99 m methylene diphosphate bone scan to detect bone metastases in patients with renal cell carcinomas – a preliminary report. J Cancer Res Clin Oncol 128:503–506PubMedCrossRefGoogle Scholar
  31. 31.
    Ghanem N, Altehoefer C, Hogerle S et al (2002) Comparative diagnostic value and therapeutic relevance of magnetic resonance imaging and bone marrow scintigraphy in patients with metastatic solid tumors of the axial skeleton. Eur J Radiol 43:256–261PubMedCrossRefGoogle Scholar
  32. 32.
    Yang SN, Liang JA, Lin FJ et al (2002) Comparing whole body 18 F-2-deoxyglucose positron emission tomography and technetium-99 m methylene diphosphonate bone scan to detect bone metastases in patients with breast cancer. J Cancer Res Clin Oncol 128:325–328PubMedCrossRefGoogle Scholar
  33. 33.
    Hsia TC, Shen YY, Yen RF et al (2002) Comparing whole body 18 F-2-deoxyglucose positron emission tomography and technetium-99 m methylene diphosphate bone scan to detect bone metastases in patients with non-small cell lung cancer. Neoplasma 49:267–271PubMedGoogle Scholar
  34. 34.
    Prior JO, Barghouth G, Delaloye JF et al (2003) The value of bone marrow scintigraphy using 99mTc monoclonal antigranulocyte antibodies in complement to bone scintigraphy in detecting bone metastases from primary breast cancer. Nucl Med Commun 24:29–36PubMedCrossRefGoogle Scholar
  35. 35.
    Zhang C, Zhou Q, Chen YH et al (2003) Comparison of 18 F-FDG PET with 99mTc-MDP bone scan in detection of bone metastases. Chin J Nucl Med 23:201–203Google Scholar
  36. 36.
    Lee KH, Park JM, Yoon JK et al (2003) Bone scintigraphy of skeletal metastasis in hepatoma patients treated by TAE. Hepato-Gastroenterology 50:1983–1986PubMedGoogle Scholar
  37. 37.
    Han LJ, Qu WY, He J et al (2003) Comparison of the clinical values of 18 F-FDG hPET/CT and 99mTc-MDP bone scan in detection of bone metastases. Chin J Nucl Med 23:204–206Google Scholar
  38. 38.
    Nakamoto YJ, Osman M, Wahl RL (2003) Prevalence and patterns of bone metastases detected with positron emission tomography using F-18 FDG. Clin Nucl Med 28:302–307PubMedGoogle Scholar
  39. 39.
    Bossche BVD, Dhaeninck E, Winter FD et al (2004) 99mTc depreotide scan compared with 99mTc-MDP bone scintigraphy for the detection of bone metastases and prediction of response to hormonal treatment in patients with breast cancer. Nucl Med Commun 25:787–792CrossRefGoogle Scholar
  40. 40.
    Schirrmeister H, Arslandemir C, Glatting G et al (2004) Omission of bone scanning according to staging guidelines leads to futile therapy in non-small cell lung cancer. Eur J Nucl Med Mol Imag 31:964–968CrossRefGoogle Scholar
  41. 41.
    Cheran SK, Herndon JE 2nd, Patz EF Jr (2004) Comparison of whole-body FDG-PET to bone scan for detection of bone metastases in patients with a new diagnosis of lung cancer. Lung Cancer 44:317–325PubMedCrossRefGoogle Scholar
  42. 42.
    Engelhard K, Hollenbach HP, Wohlfart K et al (2004) Comparison of whole-body MRI with automatic moving table technique and bone scintigraphy for screening for bone metastases in patients with breast cancer. Eur Radiol 14:99–105PubMedCrossRefGoogle Scholar
  43. 43.
    Lauenstein TC, Goehde SC, Herborn CU et al (2004) Whole-body MR imaging: evaluation of patients for metastases. Radiology 233:139–148PubMedCrossRefGoogle Scholar
  44. 44.
    Abe K, Sasaki M, Kuwabara Y et al (2005) Comparison of 18FDG-PET with 99mTc-HMDP scintigraphy for the detection of bone metastases in patients with breast cancer. Ann Nucl Med 19:573–579PubMedCrossRefGoogle Scholar
  45. 45.
    Nakai T, Okuyama C, Kubota T et al (2005) Pitfalls of FDG-PET for the diagnosis of osteoblastic bone metastases in patients with breast cancer. Eur J Nucl Med Mol Imag 32:1253–1258CrossRefGoogle Scholar
  46. 46.
    Kato H, Miyazaki T, Nakajima M et al (2005) Comparison between whole-body positron emission tomography and bone scintigraphy in evaluating bony metastases of esophageal carcinomas. Anticancer Res 25:4439–4444PubMedGoogle Scholar
  47. 47.
    Uematsu T, Yuen S, Yukisawa S et al (2004) Comparison of FDG PET and SPECT for detection of bone metastases in breast cancer. AJR Am J Roentgenol 184:1266–1273Google Scholar
  48. 48.
    Fujimoto R, Higashi T, Nakamoto Y et al (2006) Diagnostic accuracy of bone metastases detection in cancer patients: Comparison between bone scintigraphy and whole-body FDG-PET. Ann Nucl Med 20:399–408PubMedCrossRefGoogle Scholar
  49. 49.
    Gao Y, Fang J, Liu XY et al (2006) Diagnostic value of nuclide bone imaging for bone metastasis from lung cancer and clinic analysis. Chin J Lung Canc 9:357–361Google Scholar
  50. 50.
    Groves AM, Beadsmoore CJ, Cheow HK et al (2006) Can 16-detector multislice CT exclude skeletal lesions during tumour staging? Implications for the cancer patient. Eur Radiol 16:1066–1073PubMedCrossRefGoogle Scholar
  51. 51.
    Sadik M, Jakobsson D, Olofsson F et al (2006) A new computer-based decision-support system for the interpretation of bone scans. Nucl Med Commun 27:417–423PubMedCrossRefGoogle Scholar
  52. 52.
    Liu FY, Chang JT, Wang HM et al (2006) [18 F]Fluorodeoxyglucose positron emission tomography is more sensitive than skeletal scintigraphy for detecting bone metastasis in endemic nasopharyngeal carcinoma at initial staging. J Clin Oncol 24:599–604PubMedCrossRefGoogle Scholar
  53. 53.
    Sapir EE, Metser U, Mishani E et al (2006) The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and Multi-Field-of-View SPECT, 18 F-Fluoride PET, and 18 F-Fluoride PET/CT. J Nucl Med 47:287–297Google Scholar
  54. 54.
    Aslan S, Cetin B, Akinci M et al (2006) Computed tomography in detecting bone metastases of breast carcinoma. Is it better than plain x-ray? Saudi Med J 27:1326–1328PubMedGoogle Scholar
  55. 55.
    Hur J, Yoon CS, Ryu YH et al (2007) Accuracy of fluorodeoxyglucose positron emission tomography for diagnosis of single bone metastasis: comparison with bone scintigraphy. J Comput Assist Tomogr 31:812–819PubMedCrossRefGoogle Scholar
  56. 56.
    Phan HT, Jager PL, Plukker JT et al (2007) Detection of bone metastases in thyroid cancer patients: bone scintigraphy or 18 F-FDG PET? Nucl Med Commun 28:597–602PubMedCrossRefGoogle Scholar
  57. 57.
    Strobel K, Burger C, Brukhardt S et al (2007) Characterization of focal bone lesions in the axial skeleton: lesions in the axial skeleton: scintigraphy compared with SPECT and SPECT fused with CT. AJR Am J Roentgenol 188:467–474CrossRefGoogle Scholar
  58. 58.
    Ito S, Kato K, Ikeda M et al (2007) Comparison of 18 F-FDG PET and bone scintigraphy in detection of bone metastases of thyroid cancer. J Nucl Med 48:889–895PubMedCrossRefGoogle Scholar
  59. 59.
    Schmidt GP, Schoenberg SO, Schmid R et al (2007) Screening for bone metastases: whole-body MRI using a 32-channel system versus dual-modality PET-CT. Eur Radiol 17:939–949PubMedCrossRefGoogle Scholar
  60. 60.
    Taira A, Herfkens RJ, Gambhir SS et al (2007) Detection of bone metastases: assessment of integrated FDG PET/CT Imaging. Radiology 243:204–211PubMedCrossRefGoogle Scholar
  61. 61.
    Pfannenberg C, Aschoff P, Schanz S et al (2007) Prospective comparison of 18 F-fluorodeoxyglucose positron emission tomography/computed tomography and whole-body magnetic resonance imaging in staging of advanced malignant melanoma. Eur J Cancer 43:557–564PubMedCrossRefGoogle Scholar
  62. 62.
    Lecouvet FE, Geukens D, Stainier A et al (2007) Magnetic resonance imaging of the axial skeleton for detecting bone metastases in patients with high-risk prostate cancer: diagnostic and cost-effectiveness and comparison with current detection strategies. J Clin Oncol 25:3281–3287PubMedCrossRefGoogle Scholar
  63. 63.
    Xu X, Ma L, Zhang JS et al (2008) Feasibility of whole body diffusion weighted imaging in detecting bone metastasis on 3.0 T MR scanner. Chin Med Sci J 23:151–157PubMedCrossRefGoogle Scholar
  64. 64.
    Sadik M, Suurkula M, Hoglund P et al (2008) Quality of planar whole-body bone scan interpretations—a nationwide survey. Eur J Nucl Med Mol Imag 35:1464–1472CrossRefGoogle Scholar
  65. 65.
    Kim MR, Roh JL, Kin JS et al (2008) 18 F-Fluorodeoxyglucose-positron emission tomography and bone scintigraphy for detecting bone metastases in patients with malignancies of the upper aerodigestive tract. Oral Oncol 44:148–152PubMedCrossRefGoogle Scholar
  66. 66.
    Bistow AR, Agrawal A, Evans AJ et al (2008) Can computerised tomography replace bone scintigraphy in detecting bone metastases from breast cancer? A prospective study. Breast 17:100–105Google Scholar
  67. 67.
    Wu SQ, Liu JJ, Song SS et al (2008) Comparison of the value of 18 F-FDG PET and 99mTc-MDP bone scan in the detection of bone metastases. Radiol Pract 23:1273–1277Google Scholar
  68. 68.
    Song JW, Oh YM, Shim TS et al (2009) Efficacy comparison between 18 F-FDG PET/CT and bone scintigraphy in detecting bony metastases of non-small-cell lung cancer. Lung Cancer 65:333–338PubMedCrossRefGoogle Scholar
  69. 69.
    Takenaka D, Ohno Y, Matsumoto K et al (2009) Detection of bone metastases in non-small cell lung cancer patients: comparison of whole-body diffusion-weighted imaging (DWI), whole-body MR Imaging without and with DWI, whole-Body FDG-PET/CT, and bone scintigraphy. J Magn Reson Imaging 30:298–308PubMedCrossRefGoogle Scholar
  70. 70.
    Venkitaraman R, Cook G, Dearnaley D et al (2009) Whole-body magnetic resonance imaging in the detection of skeletal metastases in patients with prostate cancer. J Med Imaging Radiat Oncol 53:241–247PubMedCrossRefGoogle Scholar
  71. 71.
    Min JW, Um SW, Yi JJ et al (2009) The Role of whole-Body FDG PET/CT, Tc 99 m MDP bone scintigraphy, and serum alkaline phosphatase in detecting bone metastasis in patients with newly diagnosed lung cancer. J Kor Med Sci 24:275–280CrossRefGoogle Scholar
  72. 72.
    Costo S, Halley A, Bergot E et al (2009) Usefulness of 99mTc-depreotide scintigraphy for the diagnosis of bone metastases in non-small cell lung cancer stage III–IV. Med Nucl 33:201–210Google Scholar
  73. 73.
    Kruger S, Buck AK, Mottaghy FM et al (2009) Detection of bone metastases in patients with lung cancer: 99mTc-MDP planar bone scintigraphy, 18 F-fluoride PET or 18 F-FDG PET/CT. Eur J Nucl Med Mol Imag 36:1807–1812CrossRefGoogle Scholar
  74. 74.
    Sohaib SA, Cook G, Allen SD et al (2009) Comparison of whole-body MRI and bone scintigraphy in the detection of bone metastases in renal cancer. Br J Radiol 82:632–639PubMedCrossRefGoogle Scholar
  75. 75.
    Xu WN, Xin J, Yu SP et al (2009) Comparison of 18 F-FDG PET-CT and 99mTc-MDP bone scintigraphy in detection of bone metastases. J Chin Clin Med Imaging 20:323–327Google Scholar
  76. 76.
    Liu NB, Ma L, Zhou W et al (2010) Bone metastasis in patients with non-small cell lung cancer: the diagnostic role of F-18 FDG PET/CT. Eur J Radiol 74:231–235PubMedCrossRefGoogle Scholar
  77. 77.
    Liu FY, Yen TC, Chen MY et al (2009) Detection of hematogenous bone metastasis in cervical cancer: 18 F-Fluorodeoxyglucose–positron emission tomography versus computed tomography and magnetic resonance imaging. Cancer 115:5470–5480PubMedCrossRefGoogle Scholar
  78. 78.
    Heusner T, Golitz P, Hamami M et al (2011) “One-stop-shop” staging: Should we prefer FDG-PET/CT or MRI for the detection of bone metastases? Eur J Radiol 78:430–435PubMedCrossRefGoogle Scholar
  79. 79.
    Putzer D, Gabriel M, Henninger B et al (2009) Bone metastases in patients with neuroendocrine tumor:68 Ga-DOTA-Tyr3-Octreotide PET in comparison to CT and bone scintigraphy. J Nucl Med 50:1214–1221PubMedCrossRefGoogle Scholar
  80. 80.
    Zhao Z, Li L, Li FL et al (2010) Single photon emission computed tomography/spiral computed tomography fusion imaging for the diagnosis of bone metastasis in patients with known cancer. Skeletal Radiol 39:147–153PubMedCrossRefGoogle Scholar
  81. 81.
    Lijmer JG, Mol BW, Heisterkamp S et al (1999) Empirical evidence of design-related bias in studies of diagnostic tests. JAMA 282:1061–1066PubMedCrossRefGoogle Scholar
  82. 82.
    Rutter CM, Gatsonis CA (2001) A hierarchical regression approach to meta-analysis of diagnostic test accuracy evaluations. Stat Med 20:2865–2884PubMedCrossRefGoogle Scholar
  83. 83.
    Pham B, Platt R, McAuley L et al (2001) Is there a “best” way to detect and minimize publication bias? an empirical evaluation. Eval Health Prof 24:109–125PubMedGoogle Scholar
  84. 84.
    Bossuyt PM, Reitsma JB, Bruns DE et al (2003) Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Radiology 226:24–28PubMedCrossRefGoogle Scholar
  85. 85.
    Fay MP, Graubard BI, Freedman LS et al (1998) Conditional logistic regression with sandwich estimators: application to a meta-analysis. Biometrics 54:195–208PubMedCrossRefGoogle Scholar
  86. 86.
    Bipat S, van Leeuwen MS, Comans EF et al (2005) Colorectal liver metastases: CT, MR imaging, and PET for diagnosis – meta-analysis. Radiology 237:123–131PubMedCrossRefGoogle Scholar
  87. 87.
    Tryciecky EW, Gottschalk A, Ludema K (1997) Oncologic imaging: interactions of nuclear medicine with CT and MRI using the bone scan as a model. Semin Nucl Med 27:142–151PubMedCrossRefGoogle Scholar
  88. 88.
    Deeks J (2001) Systematic reviews of evaluations of diagnostic and screening tests. BMJ 323:157–162PubMedCrossRefGoogle Scholar
  89. 89.
    Cook GJ, Houston S, Rubens R et al (1998) Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol 16:3375–3379PubMedGoogle Scholar
  90. 90.
    Muindi J, Coombes RC, Golding S et al (1983) The role of computed tomography in the detection of bone metastases in breast cancer patients. Br J Radiol 56:233–236PubMedCrossRefGoogle Scholar
  91. 91.
    Karnholz R, Sze G (1991) Current imaging in spinal metastatic disease. Semin Oncol 18:158–169Google Scholar
  92. 92.
    Vogler JB, Murphy WA (1988) Bone marrow imaging. Radiology 168:679–693PubMedGoogle Scholar
  93. 93.
    Blake GM, Park-Holohan SJ, Cook GJ et al (2001) Quantitative studies of bone with the use of 18 F-fluoride and 99mTc-methylene diphosphonate. Semin Nucl Med 31:28–49PubMedCrossRefGoogle Scholar
  94. 94.
    Cook GJ, Fogelman I (2000) The role of positron emission tomography in the management of bone metastases. Cancer 88:2927–2933PubMedCrossRefGoogle Scholar
  95. 95.
    Loeffler RK, DiSimone RN, Howland WJ (1975) Limitations of bone scanning in clinical oncology. JAMA 234:1228–1232PubMedCrossRefGoogle Scholar
  96. 96.
    Roland J, van den Weygaert D, Krug B et al (1995) Metastases seen on SPECT imaging despite a normal planar bone scan. Clin Nucl Med 20:1052–1054PubMedCrossRefGoogle Scholar
  97. 97.
    Sedonja I, Budihna NV (1999) The benefit of SPECT when added to planar scintigraphy in patients with bone metastases in the spine. Clin Nucl Med 24:407–413PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2011

Authors and Affiliations

  • Hui-Lin Yang
    • 1
    Email author
  • Tao Liu
    • 1
  • Xi-Ming Wang
    • 2
  • Yong Xu
    • 4
  • Sheng-Ming Deng
    • 3
  1. 1.Department of OrthopaedicsThe first affiliated hospital of Soochow UniversitySuzhouPeople’s Republic of China
  2. 2.Department of RadiologyThe first affiliated hospital of Soochow UniversitySuzhouPeople’s Republic of China
  3. 3.Department of Nuclear Medicine, The first affiliated hospital of Soochow UniversitySuzhouPeople’s Republic of China
  4. 4.Department of Epidemiology and BiostatisticsPublic health school of Soochow UniversitySuzhouPeople’s Republic of China

Personalised recommendations