European Radiology

, 21:2427 | Cite as

Diffusion tensor imaging and tractography for assessment of renal allograft dysfunction—initial results

  • Katja Hueper
  • M. Gutberlet
  • T. Rodt
  • W. Gwinner
  • F. Lehner
  • F. Wacker
  • M. Galanski
  • D. Hartung



To evaluate MR diffusion tensor imaging (DTI) as non-invasive diagnostic tool for detection of acute and chronic allograft dysfunction and changes of organ microstructure.


15 kidney transplanted patients with allograft dysfunction and 14 healthy volunteers were examined using a fat-saturated echo-planar DTI-sequence at 1.5 T (6 diffusion directions, b = 0, 600 s/mm²). Mean apparent diffusion coefficient (ADC) and mean fractional anisotropy (FA) were calculated separately for the cortex and for the medulla and compared between healthy and transplanted kidneys. Furthermore, the correlation between diffusion parameters and estimated GFR was determined.


The ADC in the cortex and in the medulla were lower in transplanted than in healthy kidneys (p < 0.01). Differences were more distinct for FA, especially in the renal medulla, with a significant reduction in allografts (p < 0.001). Furthermore, in transplanted patients a correlation between mean FA in the medulla and estimated GFR was observed (r = 0.72, p < 0.01). Tractography visualized changes in renal microstructure in patients with impaired allograft function.


Changes in allograft function and microstructure can be detected and quantified using DTI. However, to prove the value of DTI for standard clinical application especially correlation of imaging findings and biopsy results is necessary.


Kidney transplantation Diffusion tensor imaging Anisotropy Diffusion magnetic resonance imaging Glomerular filtration rate 


  1. 1.
    Schwarz A, Gwinner W, Hiss M, Radermacher J, Mengel M, Haller H (2005) Safety and adequacy of renal transplant protocol biopsies. Am J Transplant 5:1992–1996PubMedCrossRefGoogle Scholar
  2. 2.
    Thoeny HC, Zumstein D, Simon-Zoula S et al (2006) Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience. Radiology 241:812–821PubMedCrossRefGoogle Scholar
  3. 3.
    Blondin D, Lanzman RS, Mathys C et al (2009) Functional MRI of transplanted kidneys using diffusion-weighted imaging. Rofo 181:1162–1167PubMedGoogle Scholar
  4. 4.
    Eisenberger U, Thoeny HC, Binser T et al (2010) Evaluation of renal allograft function early after transplantation with diffusion-weighted MR imaging. Eur Radiol 20:1374–1383. doi: 10.1007/s00330-009-1679-9 PubMedCrossRefGoogle Scholar
  5. 5.
    Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505PubMedGoogle Scholar
  6. 6.
    Hagmann P, Jonasson L, Maeder P, Thiran JP, Wedeen VJ, Meuli R (2006) Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics 26(Suppl 1):S205–23. doi: 10.1148/rg.26si065510 PubMedCrossRefGoogle Scholar
  7. 7.
    Mukherjee P, Berman JI, Chung SW, Hess CP, Henry RG (2008) Diffusion tensor MR imaging and fiber tractography: theoretic underpinnings. AJNR Am J Neuroradiol 29:632–641. doi: 10.3174/ajnr.A1051 PubMedCrossRefGoogle Scholar
  8. 8.
    Fukuda Y, Ohashi I, Hanafusa K et al (2000) Anisotropic diffusion in kidney: apparent diffusion coefficient measurements for clinical use. J Magn Reson Imaging 11:156–160PubMedCrossRefGoogle Scholar
  9. 9.
    Ries M, Jones RA, Basseau F, Moonen CT, Grenier N (2001) Diffusion tensor MRI of the human kidney. J Magn Reson Imaging 14:42–49PubMedCrossRefGoogle Scholar
  10. 10.
    Notohamiprodjo M, Dietrich O, Horger W et al (2010) Diffusion tensor imaging (DTI) of the kidney at 3 tesla-feasibility, protocol evaluation and comparison to 1.5 tesla. Invest Radiol 45:245–254PubMedCrossRefGoogle Scholar
  11. 11.
    Notohamiprodjo M, Glaser C, Herrmann KA et al (2008) Diffusion tensor imaging of the kidney with parallel imaging: initial clinical experience. Invest Radiol 43:677–685PubMedCrossRefGoogle Scholar
  12. 12.
    Gurses B, Kilickesmez O, Tasdelen N, Firat Z, Gurmen N (2010) Diffusion tensor imaging of the kidney at 3 tesla: normative values and repeatability of measurements in healthy volunteers. Diagn Interv Radiol. doi: 10.4261/1305-3825.DIR.3892-10.1;10.4261/1305-3825.DIR.3892-10.1
  13. 13.
    Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41PubMedCrossRefGoogle Scholar
  14. 14.
    Lanzman RS, Wittsack HJ, Martirosian P et al (2010) Quantification of renal allograft perfusion using arterial spin labeling MRI: initial results. Eur Radioll 20(6):1485–9CrossRefGoogle Scholar
  15. 15.
    Mengel M, Gwinner W, Schwarz A et al (2007) Infiltrates in protocol biopsies from renal allografts. Am J Transplant 7:356–365PubMedCrossRefGoogle Scholar
  16. 16.
    Seron D (2009) Interstitial fibrosis and tubular atrophy in renal allograft protocol biopsies as a surrogate of graft survival. Transplant Proc 41:769–770PubMedCrossRefGoogle Scholar
  17. 17.
    Seron D, Moreso F (2007) Protocol biopsies in renal transplantation: prognostic value of structural monitoring. Kidney Int 72:690–697PubMedCrossRefGoogle Scholar
  18. 18.
    Haller H, Richter N, Brocker V, Gwinner W, Gueler F, Schwarz A (2009) Current problems of kidney transplantation. Internist (Berl) 50:523–535CrossRefGoogle Scholar
  19. 19.
    Kataoka M, Kido A, Yamamoto A et al (2009) Diffusion tensor imaging of kidneys with respiratory triggering: optimization of parameters to demonstrate anisotropic structures on fraction anisotropy maps. J Magn Reson Imaging 29:736–744PubMedCrossRefGoogle Scholar
  20. 20.
    Vermathen P, Binser T, Thoeny HC, Boesch C, Frey FJ, Eisenberger U (2011) Longitudinal follow-up of kidneys from living donors to their recipients by DWI. Proc Intl Soc Magn Reson Med 19:2983Google Scholar

Copyright information

© European Society of Radiology 2011

Authors and Affiliations

  • Katja Hueper
    • 1
  • M. Gutberlet
    • 1
  • T. Rodt
    • 1
  • W. Gwinner
    • 2
  • F. Lehner
    • 3
  • F. Wacker
    • 1
  • M. Galanski
    • 1
  • D. Hartung
    • 1
  1. 1.Hannover Medical School—GermanyInstitute for Diagnostic and Interventional RadiologyHannoverGermany
  2. 2.Hannover Medical School—GermanyClinic for NephrologyHannoverGermany
  3. 3.Hannover Medical School—GermanyClinic for General, Abdominal and Transplant SurgeryHannoverGermany

Personalised recommendations