European Radiology

, Volume 22, Issue 1, pp 1–8 | Cite as

High-resolution spiral CT of the breast at very low dose: concept and feasibility considerations

  • Willi A. Kalender
  • Marcel Beister
  • John M. Boone
  • Daniel Kolditz
  • Sabrina V. Vollmar
  • Michaela C. C. Weigel
Breast

Abstract

Objective

Mammography, today’s standard imaging approach, has deficits with respect to the superimposition of anatomical structures. Dedicated CT of the breast so far indicated that it can provide superior soft-tissue imaging, but that it still has significant limitations with respect to spatial resolution and dose. We have assessed novel dedicated breast CT technology.

Methods

Based on simulations and measurements we developed novel technology which uses direct-conversion CdTe material and photon-counting electronics with 100 μm detector element size for close to 100% dose efficiency. We assessed the potential for the imaging of microcalcifications of 100 to 200 μm diameter and soft-tissue lesions of 1 to 5 mm diameter by simulations at dose levels between 1 and 6 mGy.

Results

Microcalcifications of 150 μm and soft-tissue lesions of 2 mm diameter were found to be clearly detectable at an average glandular dose of 3 mGy. Separate displays are required for high-resolution microcalcification and for low-resolution soft-tissue analysis. Total CT data acquisition time will be below 10 s.

Conclusion

Dedicated breast CT may eventually provide comprehensive diagnostic assessment of microcalcifications and soft-tissue structures at dose levels equivalent to or below those of two-view screening mammography.

Keywords

Computed tomography (CT) Breast Image quality Spatial resolution Dose efficiency 

References

  1. 1.
    Hall FM (2008) The rise and impending decline of screening mammography. Radiology 247:597–601PubMedCrossRefGoogle Scholar
  2. 2.
    Smith JA, Andreopoulou E (2004) An overview of the status of imaging screening technology for breast cancer. Ann Oncol 15(Suppl 1):18–26CrossRefGoogle Scholar
  3. 3.
    Yaffe MJ (2004) What should the burden of proof be for acceptance of a new breast-cancer screening technique? Lancet 364(9440):1111–1112PubMedCrossRefGoogle Scholar
  4. 4.
    Carney PA, Miglioretti DL, Yankaskas BC et al (2003) Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammography. Ann Intern Med 138:168–175PubMedGoogle Scholar
  5. 5.
    Kolb TM, Lichy J, Newhouse JH (2002) Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology 225:165–175PubMedCrossRefGoogle Scholar
  6. 6.
    Kuhl CK, Schrading S, Leutner CC et al (2005) Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer. J Clin Oncol 23:8469–8476PubMedCrossRefGoogle Scholar
  7. 7.
    Gennaro G, Toledano A, di Maggio C et al (2010) Digital breast tomosynthesis versus digital mammography: a clinical performance study. Eur Radiol 20:1545–1553PubMedCrossRefGoogle Scholar
  8. 8.
    Gur D, Abrams GS, Chough DM et al (2009) Digital breast tomosynthesis: observer performance study. American Journal of Roentgenology 193:586–591PubMedCrossRefGoogle Scholar
  9. 9.
    Teertstra H, Loo C, van den Bosch M et al (2010) Breast tomosynthesis in clinical practice: initial results. Eur Radiol 20:16–24PubMedCrossRefGoogle Scholar
  10. 10.
    Boone JM, Nelson TR, Lindfors KK, Seibert JA (2001) Dedicated breast CT: radiation dose and image quality evaluation. Radiology 221:657–667PubMedCrossRefGoogle Scholar
  11. 11.
    Lindfors KK, Boone JM, Nelson TR, Yang K, Kwan ALC, Miller DF (2008) Dedicated breast CT: initial clinical experience. Radiology 246:725–733PubMedCrossRefGoogle Scholar
  12. 12.
    O’Connell A, Conover DL, Zhang Y et al (2010) Cone-beam CT for breast imaging: radiation dose, breast coverage, and image quality. Am J Roentgenol 195:496–509CrossRefGoogle Scholar
  13. 13.
    McCormack VA, dos Santos SI (2006) Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 15:1159–1169PubMedCrossRefGoogle Scholar
  14. 14.
    Prionas ND, Lindfors KK, Ray S et al (2010) Contrast-enhanced dedicated breast CT: initial clinical experience. Radiology 256:714–723PubMedCrossRefGoogle Scholar
  15. 15.
    Kalender WA (2009) High-resolution CT of the breast: a proposal! Eur Radiol 19(Suppl 4):849–852Google Scholar
  16. 16.
    European Reference Organisation for Quality Assured Breast Screening and Diagnostic Services (EUREF) (2008) European guidelines for quality assurance in breast cancer screening and diagnosis, Fourth Edition. http://www.euref.org/index.php?option=com\_content\&view=article\&id=5\&Itemid=25. Accessed May 26, 2011
  17. 17.
    American College of Radiology (2008) ACR Practice guidline for performance of Screening and diagnostic mammography. http://www.acr.org/secondarymainmenucategories/quality_safety/guidelines/breast/screening_diagnostic.aspx. Accessed May 26, 2011
  18. 18.
    Yaffe MJ, Mainprize JG (2011) Risk of radiation-induced breast cancer from mammographic screening. Radiology 258:98–105PubMedCrossRefGoogle Scholar
  19. 19.
    EC EURATOM 7th Framework Program “Dedicated CT of the female breast: Feasibility, optimization and comparison to competing imaging modalities”, Contract No. FP/213153 (2008–2010) PI: W. A. Kalender. http://www.imp.uni-erlangen.de/BreastCT/index.html. Accessed May 26, 2011
  20. 20.
    Deutsche Forschungsgemeinschaft Research Unit FOR 661 “Multimodal Imaging for Preclinical Research”, DFG Az. KA 1254/11-2 (2009–2012) PI: W. A. Kalender. http://www.imp.uni-erlangen.de/for661/index.htm. Accessed May 26, 2011
  21. 21.
    Hendrick RE, Pisano ED, Averbukh A et al (2010) Comparison of acquisition parameters and breast dose in digital mammogrphy and screen-film mammography in the American College of Radiology Imaging Network Digital Mammographic Imaging Screening Trial. Am J Radiology 194:362–369Google Scholar
  22. 22.
    Boone JM, Shah N, Nelson TR (2004) A comprehensive analysis of DgN[sub CT] coefficients for pendant-geometry cone-beam breast computed tomography. Med Phys 31:226–235PubMedCrossRefGoogle Scholar
  23. 23.
    Kalender WA (2011) Computed tomography. Publicis Corporate Publishing, ErlangenGoogle Scholar
  24. 24.
    Weigel M, Vollmar SV, Kalender WA (2011) Spectral optimization for dedicated breast CT. Med Phys 38:114–124PubMedCrossRefGoogle Scholar
  25. 25.
    Kolditz D, Kyriakou Y, Kalender WA (2010) Volume-of-interest (VOI) imaging in C-arm flat-detector CT for high image quality at reduced dose. Med Phys 37:2719–2730PubMedCrossRefGoogle Scholar
  26. 26.
    Beekman FJ, Kamphuis C (2001) Ordered subset reconstruction for x-ray CT. Phys Med Biol 46:1835CrossRefGoogle Scholar
  27. 27.
    International Commission on Radiation Units and Measurements (1989) ICRU report 44: tissue substitutes in radiation dosimetry and measurementGoogle Scholar
  28. 28.
    Yaffe MJ, Boone JM, Packard N et al (2009) The myth of the 50–50 breast. Med Phys 36:5437–5443PubMedCrossRefGoogle Scholar
  29. 29.
    Deak PD, Langner O, Lell M, Kalender WA (2009) Effects of adaptive section collimation on patient radiation dose in multisection spiral CT. Radiology 252:140–147PubMedCrossRefGoogle Scholar
  30. 30.
    Sechopoulos I, Feng SSJ, D’Orsi CJ (2010) Dosimetric characterization of a dedicated breast computed tomography clinical prototype. Med Phys 37:4110–4120PubMedCrossRefGoogle Scholar
  31. 31.
    Bundesministerium für Bildung und Forschung (BMBF) Spitzencluster Medical Valley, Verbund Bildgebende Diagnostik: Leitprojekt Brust CT, Az. 01EX1002 PI: W. A. KalenderGoogle Scholar

Copyright information

© European Society of Radiology 2011

Authors and Affiliations

  • Willi A. Kalender
    • 1
  • Marcel Beister
    • 1
  • John M. Boone
    • 2
  • Daniel Kolditz
    • 1
  • Sabrina V. Vollmar
    • 1
  • Michaela C. C. Weigel
    • 1
  1. 1.Institute of Medical PhysicsUniversity Erlangen-NürnbergErlangenGermany
  2. 2.Department of RadiologyUniversity of California Davis Medical CenterSacramentoUSA

Personalised recommendations