Advertisement

European Radiology

, Volume 21, Issue 10, pp 2039–2045 | Cite as

An education and training programme for radiological institutes: impact on the reduction of the CT radiation dose

  • Sebastian T. SchinderaEmail author
  • Reto Treier
  • Gabriel von Allmen
  • Claude Nauer
  • Philipp R. Trueb
  • Peter Vock
  • Zsolt Szucs-Farkas
Computed Tomography

Abstract

Objectives

To establish an education and training programme for the reduction of CT radiation doses and to assess this programme’s efficacy.

Methods

Ten radiological institutes were counselled. The optimisation programme included a small group workshop and a lecture on radiation dose reduction strategies. The radiation dose used for five CT protocols (paranasal sinuses, brain, chest, pulmonary angiography and abdomen) was assessed using the dose-length product (DLP) before and after the optimisation programme. The mean DLP values were compared with national diagnostic reference levels (DRLs).

Results

The average reduction of the DLP after optimisation was 37% for the sinuses (180 vs. 113 mGycm, P < 0.001), 9% for the brain (982 vs. 896 mGycm, P < 0.05), 24% for the chest (425 vs. 322 mGycm, P < 0.05) and 42% for the pulmonary arteries (352 vs. 203 mGycm, P < 0.001). No significant change in DLP was found for abdominal CT. The post-optimisation DLP values of the sinuses, brain, chest, pulmonary arteries and abdomen were 68%, 10%, 20%, 55% and 15% below the DRL, respectively.

Conclusions

The education and training programme for radiological institutes is effective in achieving a substantial reduction in CT radiation dose.

Keywords

Computed tomography Radiation dose Training programme Protocol optimisation Diagnostic reference level 

Notes

Acknowledgement

The authors thank the members of the participating radiological institutes for their great effort.

References

  1. 1.
    Brenner DJ, Hall EJ (2007) Computed tomography–an increasing source of radiation exposure. N Engl J Med 357:2277–2284PubMedCrossRefGoogle Scholar
  2. 2.
    Berrington de Gonzalez A, Mahesh M, Kim KP et al (2009) Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med 169:2071–2077PubMedCrossRefGoogle Scholar
  3. 3.
    Marin D, Nelson RC, Schindera ST et al (2010) Low-tube-voltage, high-tube-current multidetector abdominal CT: improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm–initial clinical experience. Radiology 254:145–153PubMedCrossRefGoogle Scholar
  4. 4.
    Kalra MK, Maher MM, Toth TL et al (2004) Techniques and applications of automatic tube current modulation for CT. Radiology 233:649–657PubMedCrossRefGoogle Scholar
  5. 5.
    McCollough CH, Bruesewitz MR, Kofler JM Jr (2006) CT dose reduction and dose management tools: overview of available options. Radiographics 26:503–512PubMedCrossRefGoogle Scholar
  6. 6.
    Hara AK, Paden RG, Silva AC, Kujak JL, Lawder HJ, Pavlicek W (2009) Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. AJR Am J Roentgenol 193:764–771PubMedCrossRefGoogle Scholar
  7. 7.
    Campbell J, Kalra MK, Rizzo S, Maher MM, Shepard JA (2005) Scanning beyond anatomic limits of the thorax in chest CT: findings, radiation dose, and automatic tube current modulation. AJR Am J Roentgenol 185:1525–1530PubMedCrossRefGoogle Scholar
  8. 8.
    Schindera ST, Graca P, Patak MA et al (2009) Thoracoabdominal-aortoiliac multidetector-row CT angiography at 80 and 100 kVp: assessment of image quality and radiation dose. Invest Radiol 44:650–655PubMedCrossRefGoogle Scholar
  9. 9.
    Szucs-Farkas Z, Kurmann L, Strautz T, Patak MA, Vock P, Schindera ST (2008) Patient exposure and image quality of low-dose pulmonary computed tomography angiography: comparison of 100- and 80-kVp protocols. Invest Radiol 43:871–876PubMedCrossRefGoogle Scholar
  10. 10.
    Nakayama Y, Awai K, Funama Y et al (2005) Abdominal CT with low tube voltage: preliminary observations about radiation dose, contrast enhancement, image quality, and noise. Radiology 237:945–951PubMedCrossRefGoogle Scholar
  11. 11.
    Poletti PA, Platon A, Rutschmann OT, Schmidlin FR, Iselin CE, Becker CD (2007) Low-dose versus standard-dose CT protocol in patients with clinically suspected renal colic. AJR Am J Roentgenol 188:927–933PubMedCrossRefGoogle Scholar
  12. 12.
    Li J, Udayasankar UK, Toth TL, Seamans J, Small WC, Kalra MK (2007) Automatic patient centering for MDCT: effect on radiation dose. AJR Am J Roentgenol 188:547–552PubMedCrossRefGoogle Scholar
  13. 13.
    Kalra MK, Maher MM, Toth TL et al (2004) Strategies for CT radiation dose optimization. Radiology 230:619–628PubMedCrossRefGoogle Scholar
  14. 14.
    Alkadhi H, Leschka S (2011) Radiation dose of cardiac computed tomography—what has been achieved and what needs to be done. Eur Radiol 21:505–509PubMedCrossRefGoogle Scholar
  15. 15.
    Schell B, Bauer RW, Lehnert T et al (2011) Low-dose computed tomography of the paranasal sinus and facial skull using a high-pitch dual-source system–first clinical results. Eur Radiol 21:107–112PubMedCrossRefGoogle Scholar
  16. 16.
    Kazerooni E, Sundaram B, Hohenberg P, Hanlon D Availability, Awareness, and Use of Dose Reduction Technologies among Radiologists: The CT Awareness of Radiation Exposure Study (CARES). scientific presentation at RSNA meeting 2008Google Scholar
  17. 17.
    Shrimpton PC, Hiller MC, Lewis MA, Dunn M (2005) Doses from Computed Tomography (CT) examinations in the UK-2003. Available via http://www.hpa.org.uk/web/HPAwebFile/HPAweb_C/1194947420292. Accessed 14 April 2011
  18. 18.
    Treier R, Aroua A, Verdun FR, Samara E, Stuessi A, Trueb PR (2010) Patient doses in CT examinations in Switzerland: implementation of national diagnostic reference levels. Radiat Prot Dosimetry 142:244–254PubMedCrossRefGoogle Scholar
  19. 19.
    Huda W, Ogden KM, Khorasani MR (2008) Converting dose-length product to effective dose at CT. Radiology 248:995–1003PubMedCrossRefGoogle Scholar
  20. 20.
    International Commission on Radiological Protection (2008) 2007 Recommendations of the International Commission on Radiological, Annals of the ICRP, ICRP Publication 103. Pergamon, OxfordGoogle Scholar
  21. 21.
    Kalra MK, Maher MM, Blake MA et al (2004) Detection and characterization of lesions on low-radiation-dose abdominal CT images postprocessed with noise reduction filters. Radiology 232:791–797PubMedCrossRefGoogle Scholar
  22. 22.
    Funama Y, Awai K, Miyazaki O et al (2006) Improvement of low-contrast detectability in low-dose hepatic multidetector computed tomography using a novel adaptive filter: evaluation with a computer-simulated liver including tumors. Invest Radiol 41:1–7PubMedCrossRefGoogle Scholar
  23. 23.
    Shin HO, Falck CV, Galanski M (2004) Low-contrast detectability in volume rendering: a phantom study on multidetector-row spiral CT data. Eur Radiol 14:341–349PubMedCrossRefGoogle Scholar
  24. 24.
    von Falck C, Galanski M, Shin HO (2010) Informatics in radiology: sliding-thin-slab averaging for improved depiction of low-contrast lesions with radiation dose savings at thin-section CT. Radiographics 30:317–326CrossRefGoogle Scholar
  25. 25.
    Brink JA, Amis ES Jr (2010) Image Wisely: a campaign to increase awareness about adult radiation protection. Radiology 257:601–602PubMedCrossRefGoogle Scholar
  26. 26.
    Goske MJ, Applegate KE, Boylan J et al (2008) The Image Gently campaign: working together to change practice. AJR Am J Roentgenol 190:273–274PubMedCrossRefGoogle Scholar
  27. 27.
    Raff GL, Chinnaiyan KM, Share DA et al (2009) Radiation dose from cardiac computed tomography before and after implementation of radiation dose-reduction techniques. JAMA 301:2340–2348PubMedCrossRefGoogle Scholar
  28. 28.
    Wallace AB, Goergen SK, Schick D, Soblusky T, Jolley D (2010) Multidetector CT dose: clinical practice improvement strategies from a successful optimization program. J Am Coll Radiol 7:614–624PubMedCrossRefGoogle Scholar
  29. 29.
    Hricak H, Brenner DJ, Adelstein SJ et al (2010) Managing radiation use in medical imaging: a multifaceted challenge. Radiology 258:889–905PubMedCrossRefGoogle Scholar
  30. 30.
    Ertl-Wagner BB, Hoffmann RT, Bruning R et al (2004) Multi-detector row CT angiography of the brain at various kilovoltage settings. Radiology 231:528–535PubMedCrossRefGoogle Scholar
  31. 31.
    Waaijer A, Prokop M, Velthuis BK, Bakker CJ, de Kort GA, van Leeuwen MS (2007) Circle of Willis at CT angiography: dose reduction and image quality–reducing tube voltage and increasing tube current settings. Radiology 242:832–839PubMedCrossRefGoogle Scholar
  32. 32.
    Schueller-Weidekamm C, Schaefer-Prokop CM, Weber M, Herold CJ, Prokop M (2006) CT angiography of pulmonary arteries to detect pulmonary embolism: improvement of vascular enhancement with low kilovoltage settings. Radiology 241:899–907PubMedCrossRefGoogle Scholar
  33. 33.
    Heyer CM, Mohr PS, Lemburg SP, Peters SA, Nicolas V (2007) Image quality and radiation exposure at pulmonary CT angiography with 100- or 120-kVp protocol: prospective randomized study. Radiology 245:577–583PubMedCrossRefGoogle Scholar
  34. 34.
    Szucs-Farkas Z, Schaller C, Bensler S, Patak MA, Vock P, Schindera ST (2009) Detection of pulmonary emboli with CT angiography at reduced radiation exposure and contrast material volume: comparison of 80 kVp and 120 kVp protocols in a matched cohort. Invest Radiol 44:793–799PubMedCrossRefGoogle Scholar
  35. 35.
    Wintersperger B, Jakobs T, Herzog P et al (2005) Aorto-iliac multidetector-row CT angiography with low kV settings: improved vessel enhancement and simultaneous reduction of radiation dose. Eur Radiol 15:334–341PubMedCrossRefGoogle Scholar
  36. 36.
    Kalva SP, Sahani DV, Hahn PF, Saini S (2006) Using the K-edge to improve contrast conspicuity and to lower radiation dose with a 16-MDCT: a phantom and human study. J Comput Assist Tomogr 30:391–397PubMedCrossRefGoogle Scholar
  37. 37.
    Schindera ST, Nauer C, Treier R et al (2010) Strategies for reducing the CT radiation dose. Radiologe 50:1120–1127PubMedCrossRefGoogle Scholar
  38. 38.
    Loupatatzis C, Schindera S, Gralla J et al (2008) Whole-body computed tomography for multiple traumas using a triphasic injection protocol. Eur Radiol 18:1206–1214PubMedCrossRefGoogle Scholar
  39. 39.
    Kekelidze M, Dwarkasing RS, Dijkshoorn ML, Sikorska K, Verhagen PC, Krestin GP (2010) Kidney and urinary tract imaging: triple-bolus multidetector CT urography as a one-stop shop–protocol design, opacification, and image quality analysis. Radiology 255:508–516PubMedCrossRefGoogle Scholar
  40. 40.
    Schindera ST, Nelson RC, Toth TL et al (2008) Effect of patient size on radiation dose for abdominal MDCT with automatic tube current modulation: phantom study. AJR Am J Roentgenol 190:W100–105PubMedCrossRefGoogle Scholar
  41. 41.
    Nauer CB, Kellner-Weldon F, Von Allmen G, Schaller D, Gralla J (2009) Effective doses from scan projection radiographs of the head: impact of different scanning practices and comparison with conventional radiography. AJNR Am J Neuroradiol 30:155–159PubMedCrossRefGoogle Scholar
  42. 42.
    O’Daniel JC, Stevens DM, Cody DD (2005) Reducing radiation exposure from survey CT scans. AJR Am J Roentgenol 185:509–515PubMedGoogle Scholar
  43. 43.
    Smith AB, Dillon WP, Gould R, Wintermark M (2007) Radiation dose-reduction strategies for neuroradiology CT protocols. AJNR Am J Neuroradiol 28:1628–1632PubMedCrossRefGoogle Scholar
  44. 44.
    Kalra MK, Maher MM, Toth TL, Kamath RS, Halpern EF, Saini S (2004) Radiation from “extra” images acquired with abdominal and/or pelvic CT: effect of automatic tube current modulation. Radiology 232:409–414PubMedCrossRefGoogle Scholar
  45. 45.
    Brink M, de Lange F, Oostveen LJ et al (2008) Arm raising at exposure-controlled multidetector trauma CT of thoracoabdominal region: higher image quality, lower radiation dose. Radiology 249:661–670PubMedCrossRefGoogle Scholar
  46. 46.
    Li J, Udayasankar UK, Toth TL, Small WC, Kalra MK (2008) Application of automatic vertical positioning software to reduce radiation exposure in multidetector row computed tomography of the chest. Invest Radiol 43:447–452PubMedCrossRefGoogle Scholar
  47. 47.
    Matsubara K, Koshida K, Ichikawa K et al (2009) Misoperation of CT automatic tube current modulation systems with inappropriate patient centering: phantom studies. AJR Am J Roentgenol 192:862–865PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2011

Authors and Affiliations

  • Sebastian T. Schindera
    • 1
    Email author
  • Reto Treier
    • 2
  • Gabriel von Allmen
    • 1
  • Claude Nauer
    • 3
  • Philipp R. Trueb
    • 2
  • Peter Vock
    • 1
  • Zsolt Szucs-Farkas
    • 1
  1. 1.University Institute of Diagnostic, Interventional and Pediatric Radiology, University Hospital BerneUniversity of BerneBerneSwitzerland
  2. 2.Radiation Protection DivisionFederal Office of Public HealthBerneSwitzerland
  3. 3.University Institute of Diagnostic and Interventional Neuroradiology, University Hospital BerneUniversity of BerneBerneSwitzerland

Personalised recommendations