Advertisement

European Radiology

, 21:1904 | Cite as

Influence of coronary artery disease prevalence on predictive values of coronary CT angiography: a meta-regression analysis

  • Peter Schlattmann
  • Georg M. Schuetz
  • Marc Dewey
Cardiac

Abstract

Objective

To evaluate the impact of coronary artery disease (CAD) prevalence on the predictive values of coronary CT angiography.

Methods

We performed a meta-regression based on a generalised linear mixed model using the binomial distribution and a logit link to analyse the influence of the prevalence of CAD in published studies on the per-patient negative and positive predictive values of CT in comparison to conventional coronary angiography as the reference standard. A prevalence range in which the negative predictive value was higher than 90%, while at the same time the positive predictive value was higher than 70% was considered appropriate.

Results

The summary negative and positive predictive values of coronary CT angiography were 93.7% (95% confidence interval [CI] 92.8–94.5%) and 87.5% (95% CI, 86.5–88.5%), respectively. With 95% confidence, negative and positive predictive values higher than 90% and 70% were available with CT for a CAD prevalence of 18–63%. CT systems with >16 detector rows met these requirements for the positive (P < 0.01) and negative (P < 0.05) predictive values in a significantly broader range than systems with ≤16 detector rows.

Conclusion

It is reasonable to perform coronary CT angiography as a rule-out test in patients with a low-to-intermediate likelihood of disease.

Keywords

Coronary disease Computed tomography Generalised linear mixed models Meta-regression Prevalence 

Notes

Acknowledgements

Potential conflicts of interest: Dr. Schlattmann and Dr. Dewey have received research funding for meta-analyses through a joint program from the German Science Foundation (DFG) and the German Federal Ministry of Education and Research (BMBF).

Dr. Schlattmann is also supported by another grant of the DFG (Schl 3–1) and has received lecture fees from Bayer-Schering.

Dr. Dewey has received grant support from the German Heart Foundation/German Foundation of Heart Research, GE Healthcare Biosciences, Bracco, Toshiba Medical Systems, and Guerbet and lecture fees from Toshiba Medical Systems, Guerbet, Cardiac MR Academy Berlin, and Bayer-Schering.

Dr. Dewey is consultant to Guerbet and one of the principal investigators of multicenter studies on MSCT coronary angiography sponsored by Toshiba Medical Systems. He is also the author of “Cardiac CT” (2011) and “Coronary CT Angiography” (2008) published by Springer and is offering hands-on courses on cardiac CT at Charité (www.ct-kurs.de).

References

  1. 1.
    Achenbach S (2006) Computed tomography coronary angiography. J Am Coll Cardiol 48:1919–1928PubMedCrossRefGoogle Scholar
  2. 2.
    Dewey M (2009) Coronary CT angiography. Springer, Berlin-HeidelbergGoogle Scholar
  3. 3.
    Redberg RF, Walsh J (2008) Pay now, benefits may follow–the case of cardiac computed tomographic angiography. N Engl J Med 359:2309–2311PubMedCrossRefGoogle Scholar
  4. 4.
    Lauer MS (2009) CT angiography: first things first. Circ Cardiovasc Imaging 2:1–3PubMedCrossRefGoogle Scholar
  5. 5.
    Goldstein JA, Gallagher MJ, O’Neill WW, Ross MA, O’Neil BJ, Raff GL (2007) A randomized controlled trial of multi-slice coronary computed tomography for evaluation of acute chest pain. J Am Coll Cardiol 49:863–871PubMedCrossRefGoogle Scholar
  6. 6.
    Raff GL, Chinnaiyan KM, Berman DS et al (2009) Coronary computed tomography for systematic triage of acute chest pain patients to treatment—(The CT-STAT Trial). Circulation 120:2160Google Scholar
  7. 7.
    Meijboom WB, van Mieghem CA, Mollet NR et al (2007) 64-slice computed tomography coronary angiography in patients with high, intermediate, or low pretest probability of significant coronary artery disease. J Am Coll Cardiol 50:1469–1475PubMedCrossRefGoogle Scholar
  8. 8.
    Husmann L, Schepis T, Scheffel H et al (2008) Comparison of diagnostic accuracy of 64-slice computed tomography coronary angiography in patients with low, intermediate, and high cardiovascular risk. Acad Radiol 15:452–461PubMedCrossRefGoogle Scholar
  9. 9.
    Leber AW, Johnson T, Becker A et al (2007) Diagnostic accuracy of dual-source multi-slice CT-coronary angiography in patients with an intermediate pretest likelihood for coronary artery disease. Eur Heart J 28:2354–2360PubMedCrossRefGoogle Scholar
  10. 10.
    Dewey M, Teige F, Schnapauff D et al (2006) Noninvasive detection of coronary artery stenoses with multislice computed tomography or magnetic resonance imaging. Ann Intern Med 145:407–415PubMedGoogle Scholar
  11. 11.
    Diamond GA, Forrester JS (1979) Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease. N Engl J Med 300:1350–1358PubMedCrossRefGoogle Scholar
  12. 12.
    Morise AP, Haddad WJ, Beckner D (1997) Development and validation of a clinical score to estimate the probability of coronary artery disease in men and women presenting with suspected coronary disease. Am J Med 102:350–356PubMedCrossRefGoogle Scholar
  13. 13.
    Pryor DB, Shaw L, McCants CB et al (1993) Value of the history and physical in identifying patients at increased risk for coronary artery disease. Ann Intern Med 118:81–90PubMedGoogle Scholar
  14. 14.
    Whiting P, Rutjes AW, Reitsma JB, Glas AS, Bossuyt PM, Kleijnen J (2004) Sources of variation and bias in studies of diagnostic accuracy: a systematic review. Ann Intern Med 140:189–202PubMedGoogle Scholar
  15. 15.
    Schuetz GM, Zacharopoulou NM, Schlattmann P, Dewey M (2010) Meta-analysis: noninvasive coronary angiography using computed tomography versus magnetic resonance imaging. Ann Intern Med 152:167–177PubMedGoogle Scholar
  16. 16.
    Altman D, Machin D, Bryant T, Gardner M (2000) Statistics with confidence. In: BMJ books, London. pp 108–110Google Scholar
  17. 17.
    Altman D, Machin D, Bryant T, Gardner M (2000) Statistics with confidence. In: BMJ books, London, pp 50–55Google Scholar
  18. 18.
    Hamza TH, Reitsma JB, Stijnen T (2008) Meta-analysis of diagnostic studies: a comparison of random intercept, normal-normal, and binomial-normal bivariate summary ROC approaches. Med Decis Mak 28:639–649CrossRefGoogle Scholar
  19. 19.
    Skrondal A, Rabe-Hesketh S (2009) Prediction in multilevel generalized linear models. J R Statist Soc A 172:659–687CrossRefGoogle Scholar
  20. 20.
    Skrondal A, Rabe-Hesketh S (2004) Generalized latent variable modeling: multilevel, Longitudinal and structural equation models. Chapman& Hall/CRC, Boca RatonCrossRefGoogle Scholar
  21. 21.
    Ropers D, Baum U, Pohle K et al (2003) Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation 107:664–666PubMedCrossRefGoogle Scholar
  22. 22.
    Moon JY, Chung N, Choi BW et al (2005) The utility of multi-detector row spiral CT for detection of coronary artery stenoses. Yonsei Med J 46:86–94PubMedCrossRefGoogle Scholar
  23. 23.
    Deetjen AG, Conradi G, Mollmann S et al (2007) Diagnostic value of the 16-detector row multislice spiral computed tomography for the detection of coronary artery stenosis in comparison to invasive coronary angiography. Clin Cardiol 30:118–123PubMedCrossRefGoogle Scholar
  24. 24.
    Coles DR, Wilde P, Oberhoff M, Rogers CA, Karsch KR, Baumbach A (2007) Multislice computed tomography coronary angiography in patients admitted with a suspected acute coronary syndrome. Int J Cardiovasc Imaging 23:603–614PubMedCrossRefGoogle Scholar
  25. 25.
    Hoffmann U, Moselewski F, Cury RC et al (2004) Predictive value of 16-slice multidetector spiral computed tomography to detect significant obstructive coronary artery disease in patients at high risk for coronary artery disease: patient-versus segment-based analysis. Circulation 110:2638–2643PubMedCrossRefGoogle Scholar
  26. 26.
    Mollet NR, Cademartiri F, Nieman K et al (2004) Multislice spiral computed tomography coronary angiography in patients with stable angina pectoris. J Am Coll Cardiol 43:2265–2270PubMedCrossRefGoogle Scholar
  27. 27.
    Achenbach S, Ropers D, Pohle FK et al (2005) Detection of coronary artery stenoses using multi-detector CT with 16 × 0.75 collimation and 375 ms rotation. Eur Heart J 26:1978–1986PubMedCrossRefGoogle Scholar
  28. 28.
    Hoffmann MH, Shi H, Schmitz BL et al (2005) Noninvasive coronary angiography with multislice computed tomography. JAMA 293:2471–2478PubMedCrossRefGoogle Scholar
  29. 29.
    Kaiser C, Bremerich J, Haller S et al (2005) Limited diagnostic yield of non-invasive coronary angiography by 16-slice multi-detector spiral computed tomography in routine patients referred for evaluation of coronary artery disease. Eur Heart J 26:1987–1992PubMedCrossRefGoogle Scholar
  30. 30.
    Kefer J, Coche E, Legros G et al (2005) Head-to-head comparison of three-dimensional navigator-gated magnetic resonance imaging and 16-slice computed tomography to detect coronary artery stenosis in patients. J Am Coll Cardiol 46:92–100PubMedCrossRefGoogle Scholar
  31. 31.
    Mollet NR, Cademartiri F, Krestin GP et al (2005) Improved diagnostic accuracy with 16-row multi-slice computed tomography coronary angiography. J Am Coll Cardiol 45:128–132PubMedCrossRefGoogle Scholar
  32. 32.
    Morgan-Hughes GJ, Roobottom CA, Owens PE, Marshall AJ (2005) Highly accurate coronary angiography with submillimetre, 16 slice computed tomography. Heart 91:308–313PubMedCrossRefGoogle Scholar
  33. 33.
    Bonmassari R, Muraglia S, Centonze M, Coser D, Stoppa G, Disertori M (2006) Noninvasive detection of coronary artery stenosis with 16-slice spiral computed tomography in a population at low to moderate risk for coronary artery disease. J Cardiovasc Med (Hagerstown) 7:817–825CrossRefGoogle Scholar
  34. 34.
    Erdogan N, Akar N, Vural M et al (2006) Diagnostic value of 16-slice multidetector computed tomography in symptomatic patients with suspected significant obstructive coronary artery disease. Heart Vessels 21:278–284PubMedCrossRefGoogle Scholar
  35. 35.
    Garcia MJ, Lessick J, Hoffmann MH (2006) Accuracy of 16-row multidetector computed tomography for the assessment of coronary artery stenosis. JAMA 296:403–411PubMedCrossRefGoogle Scholar
  36. 36.
    Ghersin E, Litmanovich D, Dragu R et al (2006) 16-MDCT coronary angiography versus invasive coronary angiography in acute chest pain syndrome: a blinded prospective study. AJR Am J Roentgenol 186:177–184PubMedCrossRefGoogle Scholar
  37. 37.
    Gilard M, Cornily JC, Pennec PY et al (2006) Accuracy of multislice computed tomography in the preoperative assessment of coronary disease in patients with aortic valve stenosis. J Am Coll Cardiol 47:2020–2024PubMedCrossRefGoogle Scholar
  38. 38.
    Henneman MM, Schuijf JD, Jukema JW et al (2006) Comprehensive cardiac assessment with multislice computed tomography: evaluation of left ventricular function and perfusion in addition to coronary anatomy in patients with previous myocardial infarction. Heart 92:1779–1783PubMedCrossRefGoogle Scholar
  39. 39.
    Kolnes K, Velle OH, Hareide S, Hegbom K, Wiseth R (2006) Multislice computed tomography coronary angiography at a local hospital: pitfalls and potential. Acta Radiol 47:680–686PubMedCrossRefGoogle Scholar
  40. 40.
    Nikolaou K, Rist C, Wintersperger BJ et al (2006) Clinical value of MDCT in the diagnosis of coronary artery disease in patients with a low pretest likelihood of significant disease. Am J Roentgenol 186:1659–1668CrossRefGoogle Scholar
  41. 41.
    Olivetti L, Mazza G, Volpi D, Costa F, Ferrari O, Pirelli S (2006) Multislice CT in emergency room management of patients with chest pain and medium-low probability of acute coronary syndrome. Radiol Med (Torino) 111:1054–1063CrossRefGoogle Scholar
  42. 42.
    Reant P, Brunot S, Lafitte S et al (2006) Predictive value of noninvasive coronary angiography with multidetector computed tomography to detect significant coronary stenosis before valve surgery. Am J Cardiol 97:1506–1510PubMedCrossRefGoogle Scholar
  43. 43.
    Rodevand O, Hogalmen G, Gudim LP, Indrebo T, Molstad P, Vandvik PO (2006) Limited usefulness of non-invasive coronary angiography with 16-detector multislice computer tomography at a community hospital. Scand Cardiovasc J 40:76–82PubMedCrossRefGoogle Scholar
  44. 44.
    Andreini D, Pontone G, Pepi M et al (2007) Diagnostic accuracy of multidetector computed tomography coronary angiography in patients with dilated cardiomyopathy. J Am Coll Cardiol 49:2044–2050PubMedCrossRefGoogle Scholar
  45. 45.
    Carrascosa P, Capunay C, Bettinotti M et al (2007) Feasibility of gadolinium-diethylene triamine pentaacetic acid enhanced multidetector computed tomography for the evaluation of coronary artery disease. J Cardiovasc Comput Tomogr 1:86–94PubMedCrossRefGoogle Scholar
  46. 46.
    Chow BJ, Dennie C, Hoffmann U et al (2007) Comparison of computed tomographic angiography versus rubidium-82 positron emission tomography for the detection of patients with anatomical coronary artery disease. Can J Cardiol 23:801–807PubMedGoogle Scholar
  47. 47.
    Cornily JC, Gilard M, Le Gal G et al (2007) Accuracy of 16-detector multislice spiral computed tomography in the initial evaluation of dilated cardiomyopathy. Eur J Radiol 61:84–90PubMedCrossRefGoogle Scholar
  48. 48.
    Davin L, Lancellotti P, Bruyere PJ, Gach O, Pierard L, Legrand V (2007) Diagnostic accuracy of computed tomography coronary angiography in routine practice. Acta Cardiol 62:339–344PubMedCrossRefGoogle Scholar
  49. 49.
    Laissy JP, Messika-Zeitoun D, Serfaty JM et al (2007) Comprehensive evaluation of preoperative patients with aortic valve stenosis: usefulness of cardiac multidetector computed tomography. Heart 93:1121–1125PubMedCrossRefGoogle Scholar
  50. 50.
    Maintz D, Ozgun M, Hoffmeier A et al (2007) Whole-heart coronary magnetic resonance angiography: value for the detection of coronary artery stenoses in comparison to multislice computed tomography angiography. Acta Radiol 48:967–973PubMedCrossRefGoogle Scholar
  51. 51.
    Manghat NE, Morgan-Hughes GJ, Shaw SR et al (2007) Multi-detector row CT coronary angiography in patients with cardiomyopathy—initial single-centre experience. Clin Radiol 62:632–638PubMedCrossRefGoogle Scholar
  52. 52.
    Pontone G, Andreini D, Ballerini G, Nobili E, Pepi M (2007) Diagnostic work-up of unselected patients with suspected coronary artery disease: complementary role of multidetector computed tomography, symptoms and electrocardiogram stress test. Coron Artery Dis 18:265–274PubMedCrossRefGoogle Scholar
  53. 53.
    Postel T, Frick M, Feuchtner G et al (2007) Role of 16-multidetector computed tomography in the assessment of coronary artery stenoses: a prospective study of consecutive patients. Exp Clin Cardiol 12:149–152PubMedGoogle Scholar
  54. 54.
    Romeo F, Leo R, Clementi F et al (2007) Multislice computed tomography in an asymptomatic high-risk population. Am J Cardiol 99:325–328PubMedCrossRefGoogle Scholar
  55. 55.
    Turkvatan A, Biyikoglu SF, Buyukbayraktar F, Olcer T, Cumhur T, Duru E (2008) Clinical value of 16-slice multidetector computed tomography in symptomatic patients with suspected coronary artery disease. Acta Radiol 49:400–408PubMedCrossRefGoogle Scholar
  56. 56.
    Langer C, Peterschroder A, Franzke K et al (2009) Noninvasive coronary angiography focusing on calcification: multislice computed tomography compared with magnetic resonance imaging. J Comput Assist Tomogr 33:179–185PubMedCrossRefGoogle Scholar
  57. 57.
    Hausleiter J, Meyer T, Hadamitzky M et al (2007) Non-invasive coronary computed tomographic angiography for patients with suspected coronary artery disease: the Coronary Angiography by Computed Tomography with the Use of a Submillimeter resolution (CACTUS) trial. Eur Heart J 28:3034–3041PubMedCrossRefGoogle Scholar
  58. 58.
    Grosse C, Globits S, Hergan K (2007) Forty-slice spiral computed tomography of the coronary arteries: assessment of image quality and diagnostic accuracy in a non-selected patient population. Acta Radiol 48:36–44PubMedCrossRefGoogle Scholar
  59. 59.
    Halon DA, Gaspar T, Adawi S et al (2007) Uses and limitations of 40 slice multi-detector row spiral computed tomography for diagnosing coronary lesions in unselected patients referred for routine invasive coronary angiography. Cardiology 108:200–209PubMedCrossRefGoogle Scholar
  60. 60.
    Tsai IC, Lee T, Lee WL et al (2007) Use of 40-detector row computed tomography before catheter coronary angiography to select early conservative versus early invasive treatment for patients with low-risk acute coronary syndrome. J Comput Assist Tomogr 31:258–264PubMedCrossRefGoogle Scholar
  61. 61.
    Watkins MW, Hesse B, Green CE et al (2007) Detection of coronary artery stenosis using 40-channel computed tomography with multi-segment reconstruction. Am J Cardiol 99:175–181PubMedCrossRefGoogle Scholar
  62. 62.
    Pouleur A-C, le Polain de Waroux J-B, Kefer J, Pasquet A, Vanoverschelde J-L, Gerber BL (2008) Direct comparison of whole-heart navigator-gated magnetic resonance coronary angiography and 40- and 64-slice multidetector row computed tomography to detect the coronary artery stenosis in patients scheduled for conventional coronary angiography; 10.1161/CIRCIMAGING.107.756304. Circ Cardiovasc Imaging 1:114–121PubMedCrossRefGoogle Scholar
  63. 63.
    Leschka S, Alkadhi H, Plass A et al (2005) Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 26:1482–1487PubMedCrossRefGoogle Scholar
  64. 64.
    Mollet NR, Cademartiri F, van Mieghem CAG et al (2005) High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 112:2318–2323PubMedCrossRefGoogle Scholar
  65. 65.
    Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA (2005) Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46:552–557PubMedCrossRefGoogle Scholar
  66. 66.
    Ehara M, Surmely JF, Kawai M et al (2006) Diagnostic accuracy of 64-slice computed tomography for detecting angiographically significant coronary artery stenosis in an unselected consecutive patient population: comparison with conventional invasive angiography. Circ J 70:564–571PubMedCrossRefGoogle Scholar
  67. 67.
    Ghostine S, Caussin C, Daoud B et al (2006) Non-invasive detection of coronary artery disease in patients with left bundle branch block using 64-slice computed tomography. J Am Coll Cardiol 48:1929–1934PubMedCrossRefGoogle Scholar
  68. 68.
    Meijboom WB, Mollet NR, Van Mieghem CA et al (2006) Pre-operative computed tomography coronary angiography to detect significant coronary artery disease in patients referred for cardiac valve surgery. J Am Coll Cardiol 48:1658–1665PubMedCrossRefGoogle Scholar
  69. 69.
    Nikolaou K, Knez A, Rist C et al (2006) Accuracy of 64-MDCT in the diagnosis of ischemic heart disease. AJR Am J Roentgenol 187:111–117PubMedCrossRefGoogle Scholar
  70. 70.
    Pugliese F, Mollet NR, Runza G et al (2006) Diagnostic accuracy of non-invasive 64-slice CT coronary angiography in patients with stable angina pectoris. Eur Radiol 16:575–582PubMedCrossRefGoogle Scholar
  71. 71.
    Ropers D, Rixe J, Anders K et al (2006) Usefulness of multidetector row spiral computed tomography with 64- × 0.6-mm collimation and 330-ms rotation for the noninvasive detection of significant coronary artery stenoses. Am J Cardiol 97:343–348PubMedCrossRefGoogle Scholar
  72. 72.
    Cademartiri F, Maffei E, Palumbo A et al (2007) Diagnostic accuracy of 64-slice computed tomography coronary angiography in patients with low-to-intermediate risk. Radiol Med 112:969–981PubMedCrossRefGoogle Scholar
  73. 73.
    Hacker M, Jakobs T, Hack N et al (2007) Combined use of 64-slice computed tomography angiography and gated myocardial perfusion SPECT for the detection of functionally relevant coronary artery stenoses. First results in a clinical setting concerning patients with stable angina. Nuklearmedizin 46:29–35PubMedGoogle Scholar
  74. 74.
    Herzog C, Zwerner PL, Doll JR et al (2007) Significant coronary artery stenosis: comparison on per-patient and per-vessel or per-segment basis at 64-section CT angiography. Radiology 244:112–120PubMedCrossRefGoogle Scholar
  75. 75.
    Herzog C, Nguyen SA, Savino G et al (2007) Does two-segment image reconstruction at 64-section CT coronary angiography improve image quality and diagnostic accuracy? Radiology 244:121–129PubMedCrossRefGoogle Scholar
  76. 76.
    Meijboom WB, Mollet NR, Van Mieghem CA et al (2007) 64-Slice CT coronary angiography in patients with non-ST elevation acute coronary syndrome. Heart 93:1386–1392PubMedCrossRefGoogle Scholar
  77. 77.
    Oncel D, Oncel G, Tastan A, Tamci B (2007) Detection of significant coronary artery stenosis with 64-section MDCT angiography. Eur J Radiol 62:394–405PubMedCrossRefGoogle Scholar
  78. 78.
    Scheffel H, Leschka S, Plass A et al (2007) Accuracy of 64-slice computed tomography for the preoperative detection of coronary artery disease in patients with chronic aortic regurgitation. Am J Cardiol 100:701–706PubMedCrossRefGoogle Scholar
  79. 79.
    Shabestari AA, Abdi S, Akhlaghpoor S et al (2007) Diagnostic performance of 64-channel multislice computed tomography in assessment of significant coronary artery disease in symptomatic subjects. Am J Cardiol 99:1656–1661PubMedCrossRefGoogle Scholar
  80. 80.
    Leschka S, Scheffel H, Husmann L et al (2008) Effect of decrease in heart rate variability on the diagnostic accuracy of 64-MDCT coronary angiography. AJR Am J Roentgenol 190:1583–1590PubMedCrossRefGoogle Scholar
  81. 81.
    Ulimoen GR, Gjonnaess E, Atar D, Dahl T, Stranden E, Sandbaek G (2008) Noninvasive coronary angiography with 64-channel multidetector computed tomography in patients with acute coronary syndrome. Acta Radiol 49:1140–1144PubMedCrossRefGoogle Scholar
  82. 82.
    Meijboom WB, Meijs MF, Schuijf JD et al (2008) Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol 52:2135–2144PubMedCrossRefGoogle Scholar
  83. 83.
    Scheffel H, Alkadhi H, Plass A et al (2006) Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur Radiol 16:2739–2747PubMedCrossRefGoogle Scholar
  84. 84.
    Leschka S, Scheffel H, Desbiolles L et al (2008) Combining dual-source computed tomography coronary angiography and calcium scoring: added value for the assessment of coronary artery disease. Heart 94:1154–1161PubMedCrossRefGoogle Scholar
  85. 85.
    Oncel D, Oncel G, Tastan A (2007) Effectiveness of dual-source CT coronary angiography for the evaluation of coronary artery disease in patients with atrial fibrillation: initial experience. Radiology 245:703–711PubMedCrossRefGoogle Scholar
  86. 86.
    Ropers U, Ropers D, Pflederer T et al (2007) Influence of heart rate on the diagnostic accuracy of dual-source computed tomography coronary angiography. J Am Coll Cardiol 50:2393–2398PubMedCrossRefGoogle Scholar
  87. 87.
    Weustink AC, Meijboom WB, Mollet NR et al (2007) Reliable high-speed coronary computed tomography in symptomatic patients. J Am Coll Cardiol 50:786–794PubMedCrossRefGoogle Scholar
  88. 88.
    Stolzmann P, Leschka S, Scheffel H et al (2008) Dual-source CT in step-and-shoot mode: noninvasive coronary angiography with low radiation dose. Radiology 249:71–80PubMedCrossRefGoogle Scholar
  89. 89.
    Brodoefel H, Burgstahler C, Tsiflikas I et al (2008) Dual-source CT: effect of heart rate, heart rate variability, and calcification on image quality and diagnostic accuracy. Radiology 247:346–355PubMedCrossRefGoogle Scholar
  90. 90.
    Scheffel H, Alkadhi H, Leschka S et al (2008) Low-dose CT coronary angiography in the step-and-shoot mode: diagnostic performance. Heart 94:1132–1137PubMedCrossRefGoogle Scholar
  91. 91.
    Stolzmann P, Scheffel H, Leschka S et al (2008) Influence of calcifications on diagnostic accuracy of coronary CT angiography using prospective ECG triggering. AJR Am J Roentgenol 191:1684–1689PubMedCrossRefGoogle Scholar
  92. 92.
    Rixe J, Rolf A, Conradi G et al (2009) Detection of relevant coronary artery disease using dual-source computed tomography in a high probability patient series: -comparison with invasive angiography. Circ J 73:316–322PubMedCrossRefGoogle Scholar
  93. 93.
    Schuijf JD, Pundziute G, Jukema JW et al (2006) Diagnostic accuracy of 64-slice multislice computed tomography in the noninvasive evaluation of significant coronary artery disease. Am J Cardiol 98:145–148PubMedCrossRefGoogle Scholar
  94. 94.
    Miller JM, Rochitte CE, Dewey M et al (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359:2324–2336PubMedCrossRefGoogle Scholar
  95. 95.
    Bayrak F, Guneysu T, Gemici G et al (2008) Diagnostic performance of 64-slice computed tomography coronary angiography to detect significant coronary artery stenosis. Acta Cardiol 63:11–17PubMedCrossRefGoogle Scholar
  96. 96.
    Budoff MJ, Dowe D, Jollis JG et al (2008) Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol 52:1724–1732PubMedCrossRefGoogle Scholar
  97. 97.
    Henneman MM, Schuijf JD, Pundziute G et al (2008) Noninvasive evaluation with multislice computed tomography in suspected acute coronary syndrome: plaque morphology on multislice computed tomography versus coronary calcium score. J Am Coll Cardiol 52:216–222PubMedCrossRefGoogle Scholar
  98. 98.
    Herzog BA, Husmann L, Burkhard N et al (2008) Accuracy of low-dose computed tomography coronary angiography using prospective electrocardiogram-triggering: first clinical experience. Eur Heart J 29:3037–3042PubMedCrossRefGoogle Scholar
  99. 99.
    Marano R, De Cobelli F, Floriani I et al (2008) Italian multicenter, prospective study to evaluate the negative predictive value of 16- and 64-slice MDCT imaging in patients scheduled for coronary angiography (NIMISCAD-Non Invasive Multicenter Italian Study for Coronary Artery Disease). Eur Radiol 19:1114–1123PubMedCrossRefGoogle Scholar
  100. 100.
    Maruyama T, Takada M, Hasuike T, Yoshikawa A, Namimatsu E, Yoshizumi T (2008) Radiation dose reduction and coronary assessability of prospective electrocardiogram-gated computed tomography coronary angiography. Comparison with retrospective electrocardiogram-gated helical scan. J Am Coll Cardiol 52:1450–1455PubMedCrossRefGoogle Scholar
  101. 101.
    Pundziute G, Schuijf JD, Jukema JW et al (2008) Gender influence on the diagnostic accuracy of 64-slice multislice computed tomography coronary angiography for detection of obstructive coronary artery disease. Heart 94:48–52PubMedCrossRefGoogle Scholar
  102. 102.
    Mir-Akbari H, Ripsweden J, Jensen J et al (2009) Limitations of 64-detector-row computed tomography coronary angiography: calcium and motion but not short experience. Acta Radiol 50:174–180PubMedCrossRefGoogle Scholar
  103. 103.
    Martuscelli E, Romagnoli A, D’Eliseo A et al (2004) Accuracy of thin-slice computed tomography in the detection of coronary stenoses. Eur Heart J 25:1043–1048PubMedCrossRefGoogle Scholar
  104. 104.
    Pontone G, Andreini D, Quaglia C, Ballerini G, Nobili E, Pepi M (2007) Accuracy of multidetector spiral computed tomography in detecting significant coronary stenosis in patient populations with differing pre-test probabilities of disease. Clin Radiol 62:978–985PubMedCrossRefGoogle Scholar
  105. 105.
    Gaudio C, Mirabelli F, Pelliccia F et al (2008) Early detection of coronary artery disease by 64-slice multidetector computed tomography in asymptomatic hypertensive high-risk patients. Int J Cardiol 135:280–286PubMedCrossRefGoogle Scholar
  106. 106.
    Johnson TR, Nikolaou K, Busch S et al (2007) Diagnostic accuracy of dual-source computed tomography in the diagnosis of coronary artery disease. Invest Radiol 42:684–691PubMedCrossRefGoogle Scholar
  107. 107.
    Dewey M, Zimmermann E, Deissenrieder F et al (2009) Noninvasive coronary angiography by 320-row CT with lower radiation exposure and maintained diagnostic accuracy: comparison of results with cardiac catheterization in a head-to-head pilot investigation. Circulation 120:867–875PubMedCrossRefGoogle Scholar
  108. 108.
    Iglehart JK (2009) Health insurers and medical-imaging policy–a work in progress. N Engl J Med 360:1030–1037PubMedCrossRefGoogle Scholar
  109. 109.
    Dewey M, Hamm B (2007) Cost effectiveness of coronary angiography and calcium scoring using CT and stress MRI for diagnosis of coronary artery disease. Eur Radiol 17:1301–1309PubMedCrossRefGoogle Scholar
  110. 110.
    Genders TS, Meijboom WB, Meijs MF et al (2009) CT coronary angiography in patients suspected of having coronary artery disease: decision making from various perspectives in the face of uncertainty. Radiology 253:734–744PubMedCrossRefGoogle Scholar
  111. 111.
    Taylor AJ, Cerqueira M, Hodgson JM et al (2010) ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography: a report of the American College of Cardiology Foundation appropriate use criteria task force, the Society of cardiovascular computed tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. Circulation 122:e525–e555PubMedCrossRefGoogle Scholar
  112. 112.
    Brenner DJ, Hall EJ (2007) Computed tomography–an increasing source of radiation exposure. N Engl J Med 357:2277–2284PubMedCrossRefGoogle Scholar
  113. 113.
    Geleijns J, Calzado A, Dewey M, et al (2008) Dose assessment for a multicenter study on diagnostic performance of cardiac 64-slice CT. In: Eur Radiol Suppl 18: A 208Google Scholar
  114. 114.
    Dewey M, Vavere AL, Arbab-Zadeh A et al (2010) Patient characteristics as predictors of image quality and diagnostic accuracy of MDCT compared with conventional coronary angiography for detecting coronary artery stenoses: CORE-64 Multicenter International Trial. AJR Am J Roentgenol 194:93–102PubMedCrossRefGoogle Scholar
  115. 115.
    Leschka S, Stinn B, Schmid F et al (2009) Dual source CT coronary angiography in severely obese patients: trading off temporal resolution and image noise. Invest Radiol 44:720–727PubMedCrossRefGoogle Scholar
  116. 116.
    Flohr TG, McCollough CH, Bruder H et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268PubMedCrossRefGoogle Scholar
  117. 117.
    Alkadhi H, Scheffel H, Desbiolles L et al (2008) Dual-source computed tomography coronary angiography: influence of obesity, calcium load, and heart rate on diagnostic accuracy. Eur Heart J 29:766–776PubMedCrossRefGoogle Scholar
  118. 118.
    van der Zaag-Loonen HJ, Dikkers R, de Bock GH, Oudkerk M (2006) The clinical value of a negative multi-detector computed tomographic angiography in patients suspected of coronary artery disease: a meta-analysis. Eur Radiol 16:2748–2756PubMedCrossRefGoogle Scholar
  119. 119.
    Maurer MH, Hamm B, Dewey M (2009) Survey regarding the clinical practice of cardiac CT in Germany: indications, scanning technique and reporting. Rofo 181:1135–1143PubMedGoogle Scholar
  120. 120.
    Hillman BJ, Goldsmith JC (2010) The uncritical use of high-tech medical imaging. N Engl J Med 363:4–6PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2011

Authors and Affiliations

  • Peter Schlattmann
    • 1
  • Georg M. Schuetz
    • 2
  • Marc Dewey
    • 2
    • 3
  1. 1.Department of Medical Statistics, Informatics and DocumentationUniversity Hospital of Friedrich-Schiller University JenaJenaGermany
  2. 2.Charité, Medical School, Department of Radiology, Humboldt-Universität zu BerlinFreie Universität BerlinBerlinGermany
  3. 3.Charité, Institut für RadiologieBerlinGermany

Personalised recommendations