Advertisement

European Radiology

, Volume 21, Issue 9, pp 1938–1947 | Cite as

64-section multidetector CT of the upper abdomen: optimization of a saline chaser injection protocol for improved vascular and parenchymal contrast enhancement

  • Daniele MarinEmail author
  • Rendon C. Nelson
  • Antonino Guerrisi
  • Huiman Barnhart
  • Sebastian T. Schindera
  • Roberto Passariello
  • Carlo Catalano
Gastrointestinal

Abstract

Objectives

To prospectively investigate the effect of varying the injection flow rates of a saline chaser on vascular and parenchymal contrast enhancement during abdominal MDCT.

Methods

100 consecutive patients were randomly assigned to four injection protocols. A fixed dose of contrast medium was administered followed by no saline (Protocol A) or 50 mL of saline at 2, 4, or 8 mL/s (Protocols B, C, and D). Peak, time-to-peak, and duration of 90% peak enhancement were determined for aorta, pancreas, and liver.

Results

Aortic peak enhancement was significantly higher for Protocol D (369.5 HU) compared with Protocols A and B (332.9 HU and 326.0 HU, respectively; P < 0.05). Pancreatic peak enhancement was significantly higher for Protocols C and D (110.6 HU and 110.9 HU, respectively) compared to Protocol A (92.5 HU; P < 0.05). Aortic and pancreatic time-to-peak enhancement occurred significantly later for Protocol D compared with Protocol A (42.8 s vs. 36.1 s [P < 0.001] and 49.7 s vs. 45.3 s [P = 0.003]).

Conclusions

Injecting a saline chaser at high flow rates yields significantly higher peak aortic and pancreatic enhancement, with a slight longer time-to-peak enhancement.

Keywords

Abdomen Tomography Spiral computed Contrast media Injections Intravenous Extravasation of diagnostic and therapeutic material 

References

  1. 1.
    Bae KT (2010) Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology 256:32–61PubMedCrossRefGoogle Scholar
  2. 2.
    Takao H, Nojo T, Ohtomo K (2009) Use of a saline chaser in abdominal computed tomography: a systematic review. Clin Imaging 33:261–266PubMedCrossRefGoogle Scholar
  3. 3.
    Hopper KD, Mosher TJ, Kasales CJ, TenHave TR, Tully DA, Weaver JS (1997) Thoracic spiral CT: delivery of contrast material pushed with injectable saline solution in a power injector. Radiology 205:269–271PubMedGoogle Scholar
  4. 4.
    Irie T, Kajitani M, Yamaguchi M, Itai Y (2002) Contrast-enhanced CT with saline flush technique using two automated injectors: how much contrast medium does it save? J Comput Assist Tomogr 26:287–291PubMedCrossRefGoogle Scholar
  5. 5.
    Dorio PJ, Lee FT Jr, Henseler KP et al (2003) Using a saline chaser to decrease contrast media in abdominal CT. AJR Am J Roentgenol 180:929–934PubMedGoogle Scholar
  6. 6.
    Haage P, Schmitz-Rode T, Hübner D, Piroth W, Günther RW (2000) Reduction of contrast material dose and artifacts by a saline flush using a double power injector in helical CT of the thorax. AJR Am J Roentgenol 174:1049–1053PubMedGoogle Scholar
  7. 7.
    Schoellnast H, Tillich M, Deutschmann HA et al (2003) Abdominal multidetector row computed tomography: reduction of cost and contrast material dose using saline flush. J Comput Assist Tomogr 27:847–853PubMedCrossRefGoogle Scholar
  8. 8.
    Utsunomiya D, Awai K, Tamura Y et al (2006) 16-MDCT aortography with a low-dose contrast material protocol. AJR Am J Roentgenol 186:374–378PubMedCrossRefGoogle Scholar
  9. 9.
    de Monyé C, Cademartiri F, de Weert TT, Siepman DA, Dippel DW, van Der Lugt A (2005) Sixteen-detector row CT angiography of carotid arteries: comparison of different volumes of contrast material with and without a bolus chaser. Radiology 237:555–562PubMedCrossRefGoogle Scholar
  10. 10.
    Schoellnast H, Tillich M, Deutschmann HA et al (2004) Improvement of parenchymal and vascular enhancement using saline flush and power injection for multiple-detector-row abdominal CT. Eur Radiol 14:659–664PubMedCrossRefGoogle Scholar
  11. 11.
    Lee CH, Goo JM, Bae KT et al (2007) CTA contrast enhancement of the aorta and pulmonary artery: the effect of saline chase injected at two different rates in a canine experimental model. Invest Radiol 42:486–490PubMedCrossRefGoogle Scholar
  12. 12.
    Kim DJ, Kim TH, Kim SJ et al (2008) Saline flush effect for enhancement of aorta and coronary arteries at multidetector CT coronary angiography. Radiology 246:110–115PubMedGoogle Scholar
  13. 13.
    Kubo S, Tadamura E, Yamamuro M et al (2006) Thoracoabdominal-aortoiliac MDCT angiography using reduced dose of contrast material. AJR Am J Roentgenol 187:548–554PubMedCrossRefGoogle Scholar
  14. 14.
    Behrendt FF, Bruners P, Keil S et al (2010) Effect of different saline chaser volumes and flow rates on intravascular contrast enhancement in CT using a circulation phantom. Eur J Radiol 73:688–693PubMedCrossRefGoogle Scholar
  15. 15.
    Schindera ST, Nelson RC, Howle L, Nichols E, DeLong DM, Merkle EM (2008) Effect of varying injection rates of a saline chaser on aortic enhancement in CT angiography: phantom study. Eur Radiol 18:1683–1689PubMedCrossRefGoogle Scholar
  16. 16.
    Coursey CA, Nelson RC, Weber PW et al (2009) Contrast material administration protocols for 64-MDCT angiography: altering volume and rate and use of a saline chaser to better match the imaging window–physiologic phantom study. AJR Am J Roentgenol 193:1568–1575PubMedCrossRefGoogle Scholar
  17. 17.
    Ripamonti CI, Brunelli C (2009) Comparison between numerical rating scale and six-level verbal rating scale in cancer patients with pain: a preliminary report. Support Care Cancer 17:1433–1434PubMedCrossRefGoogle Scholar
  18. 18.
    Prokop M (2005) New challenges in MDCT. Eur Radiol 15:E35–E45PubMedCrossRefGoogle Scholar
  19. 19.
    Bae KT (2003) Peak contrast enhancement in CT and MR angiography: when does it occur and why? Pharmacokinetic study in a porcine model. Radiology 227:809–816PubMedCrossRefGoogle Scholar
  20. 20.
    Chu LL, Joe BN, Westphalen AC, Webb EM, Coakley FV, Yeh BM (2007) Patient-specific time to peak abdominal organ enhancement varies with time to peak aortic enhancement at MR imaging. Radiology 245:779–787PubMedCrossRefGoogle Scholar
  21. 21.
    Bae KT, Heiken JP, Brink JA (1998) Aortic and hepatic peak enhancement at CT: effect of contrast medium injection rate—pharmacokinetic analysis and experimental porcine model. Radiology 206:455–464PubMedGoogle Scholar
  22. 22.
    Goshima S, Kanematsu M, Kondo H et al (2006) Pancreas: optimal scan delay for contrast-enhanced multi-detector row CT. Radiology 241:167–174PubMedCrossRefGoogle Scholar
  23. 23.
    Kondo H, Kanematsu M, Goshima S et al (2007) MDCT of the pancreas: optimizing scanning delay with a bolus-tracking technique for pancreatic, peripancreatic vascular, and hepatic contrast enhancement. AJR Am J Roentgenol 188:751–756PubMedCrossRefGoogle Scholar
  24. 24.
    Kanematsu M, Goshima S, Kondo H et al (2005) Optimizing scan delays of fixed duration contrast injection in contrast-enhanced biphasic multidetector-row CT for the liver and the detection of hypervascular hepatocellular carcinoma. J Comput Assist Tomogr 29:195–201PubMedCrossRefGoogle Scholar
  25. 25.
    Itoh S, Ikeda M, Achiwa M, Satake H, Iwano S, Ishigaki T (2004) Late-arterial and portal-venous phase imaging of the liver with a multislice CT scanner in patients without circulatory disturbances: automatic bolus tracking or empirical scan delay? Eur Radiol 14:1665–1673PubMedCrossRefGoogle Scholar
  26. 26.
    Sandstede JJ, Tschammler A, Beer M, Vogelsang C, Wittenberg G, Hahn D (2001) Optimization of automatic bolus tracking for timing of the arterial phase of helical liver CT. Eur Radiol 11:1396–1400PubMedCrossRefGoogle Scholar
  27. 27.
    Wienbeck S, Fischbach R, Kloska SP et al (2010) Prospective study of access site complications of automated contrast injection with peripheral venous access in MDCT. AJR Am J Roentgenol 195:825–829PubMedCrossRefGoogle Scholar
  28. 28.
    Federle MP, Chang PJ, Confer S, Ozgun B (1998) Frequency and effects of extravasation of ionic and nonionic CT contrast media during rapid bolus injection. Radiology 206:637–640PubMedGoogle Scholar
  29. 29.
    Jacobs JE, Birnbaum BA, Langlotz CP (1998) Contrast media reactions and extravasation: relationship to intravenous injection rates. Radiology 209:411–416PubMedGoogle Scholar
  30. 30.
    Wang CL, Cohan RH, Ellis JH, Adusumilli S, Dunnick NR (2007) Frequency, management, and outcome of extravasation of nonionic iodinated contrast medium in 69,657 intravenous injections. Radiology 243:80–87PubMedCrossRefGoogle Scholar
  31. 31.
    Nelson RC, Anderson FA Jr, Birnbaum BA, Chezmar JL, Glick SN (1998) Contrast media extravasation during dynamic CT: detection with an extravasation detection accessory. Radiology 209:837–843PubMedGoogle Scholar

Copyright information

© European Society of Radiology 2011

Authors and Affiliations

  • Daniele Marin
    • 1
    • 2
    Email author
  • Rendon C. Nelson
    • 1
  • Antonino Guerrisi
    • 2
  • Huiman Barnhart
    • 3
  • Sebastian T. Schindera
    • 4
  • Roberto Passariello
    • 2
  • Carlo Catalano
    • 2
  1. 1.Department of RadiologyDuke University Medical CenterDurhamUSA
  2. 2.Department of Radiological SciencesUniversity of Rome SapienzaRomeItaly
  3. 3.Department of Biostatistics and BioinformaticsDuke University Medical CenterDurhamUSA
  4. 4.Institute for Diagnostic, Interventional and Pediatric RadiologyUniversity Hospital of BernBernSwitzerland

Personalised recommendations