Advertisement

European Radiology

, Volume 21, Issue 8, pp 1677–1686 | Cite as

Dual-energy CT angiography in peripheral arterial occlusive disease—accuracy of maximum intensity projections in clinical routine and subgroup analysis

  • Thomas Kau
  • Wolfgang Eicher
  • Christian Reiterer
  • Martin Niedermayer
  • Egon Rabitsch
  • Birgit Senft
  • Klaus A. Hausegger
Vascular-Interventional

Abstract

Objective

To evaluate the accuracy of dual-energy CT angiography (DE-CTA) maximum intensity projections (MIPs) in symptomatic peripheral arterial occlusive disease (PAOD).

Methods

In 58 patients, DE-CTA of the lower extremities was performed on dual-source CT. In a maximum of 35 arterial segments, severity of the most stenotic lesion was graded (<10%, 10–49% and 50–99% luminal narrowing or occlusion) independently by two radiologists, with DSA serving as the reference standard.

Results

In DSA, 52.3% of segments were significantly stenosed or occluded. Agreement of DE-CTA MIPs with DSA was good in the aorto-iliac and femoro-popliteal regions (κ = 0.72; κ = 0.66), moderate in the crural region (κ = 0.55), slight in pedal arteries (κ = 0.10) and very good in bypass segments (κ = 0.81). Accuracy was 88%, 78%, 74%, 55% and 82% for the respective territories and moderate (75%) overall, with good sensitivity (84%) and moderate specificity (67%). Sensitivity and specificity was 82% and 76% in claudicants and 84% and 61% in patients with critical limb ischaemia.

Conclusion

While correlating well with DSA above the knee, accuracy of DE-CTA MIPs appeared to be moderate in the calf and largely insufficient in calcified pedal arteries, especially in patients with critical limb ischaemia.

Keywords

Computed tomography and angiography Dual energy CT Peripheral arterial occlusive disease Critical limb ischemia Lower extremities 

References

  1. 1.
    Hiatt WR (2001) Medical treatment of peripheral arterial disease and claudication. N Engl J Med 344:1608–1621PubMedCrossRefGoogle Scholar
  2. 2.
    Waugh JR, Sacharias N (1992) Arteriographic complications in the DSA era. Radiology 182:243–246PubMedGoogle Scholar
  3. 3.
    Fraioli F, Catalano C, Napoli A, Francone M, Venditti F, Danti M et al (2006) Low-dose multidetector-row CT angiography of the infra-renal aorta and lower extremity vessels: image quality and diagnostic accuracy in comparison with standard DSA. Eur Radiol 16:137–146PubMedCrossRefGoogle Scholar
  4. 4.
    Ota H, Takase K, Igarashi K, Chiba Y, Haga K, Saito H, Takahashi S (2004) MDCT compared with digital subtraction angiography for assessment of lower extremity arterial occlusive disease: importance of reviewing cross-sectional images. AJR Am J Roentgenol 182:201–209PubMedGoogle Scholar
  5. 5.
    Portugaller HR, Schoellnast H, Hausegger KA, Tiesenhausen K, Amann W, Berghold A (2004) Multislice spiral CT angiography in peripheral arterial occlusive disease: a valuable tool in detecting significant arterial lumen narrowing? Eur Radiol 14:1681–1687PubMedCrossRefGoogle Scholar
  6. 6.
    Kock MC, Adriaensen ME, Pattynama PM, van Sambeek MR, van Urk H, Stijnen T, Hunink MG (2005) DSA versus multi-detector row CT angiography in peripheral arterial disease: randomized controlled trial. Radiology 237:727–737PubMedCrossRefGoogle Scholar
  7. 7.
    Willmann JK, Baumert B, Schertler T, Wildermuth S, Pfammatter T, Verdun FR et al (2005) Aortoiliac and lower extremity arteries assessed with 16-detector row CT angiography: prospective comparison with digital subtraction angiography. Radiology 236:1083–1093PubMedCrossRefGoogle Scholar
  8. 8.
    Albrecht T, Foert E, Holtkamp R, Kirchin MA, Ribbe C, Wacker FK et al (2007) 16-MDCT angiography of aortoiliac and lower extremity arteries: comparison with digital subtraction angiography. AJR Am J Roentgenol 189:702–711PubMedCrossRefGoogle Scholar
  9. 9.
    Heijenbrok-Kal MH, Kock MC, Hunink MG (2007) Lower extremity arterial disease: multidetector CT angiography meta-analysis. Radiology 245:433–439PubMedCrossRefGoogle Scholar
  10. 10.
    Kock MC, Dijkshoorn ML, Pattynama PM, Hunink MG (2007) Multi-detector row computed tomography angiography of peripheral arterial disease. Eur Radiol 17:3208–3222PubMedCrossRefGoogle Scholar
  11. 11.
    Schernthaner R, Stadler A, Lomoschitz F, Weber M, Fleischmann D, Lammer J, Loewe C (2008) Multidetector CT angiography in the assessment of peripheral arterial occlusive disease: accuracy in detecting the severity, number, and length of stenoses. Eur Radiol 18:665–671PubMedCrossRefGoogle Scholar
  12. 12.
    Schernthaner R, Fleischmann D, Stadler A, Schernthaner M, Lammer J, Loewe C (2009) Value of MDCT angiography in developing treatment strategies for critical limb ischemia. AJR Am J Roentgenol 192:1416–1424PubMedCrossRefGoogle Scholar
  13. 13.
    Yamamoto S, McWilliams J, Arellano C, Marfori W, Cheng W, Mcnamara T et al (2009) Dual-energy CT angiography of pelvic and lower extremity arteries: dual-energy bone subtraction versus manual bone subtraction. Clin Radiol 64:1088–1096PubMedCrossRefGoogle Scholar
  14. 14.
    Johnson TR, Krauss B, Sedlmair M, Grasruck M, Bruder H, Morhard D et al (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17:1510–1517PubMedCrossRefGoogle Scholar
  15. 15.
    Vock P, Szucs-Farkas Z (2009) Dual energy subtraction: principles and clinical applications. Eur J Radiol 72:231–237PubMedCrossRefGoogle Scholar
  16. 16.
    Tran DN, Straka M, Roos JE, Napel S, Fleischmann D (2009) Dual-energy CT discrimination of iodine and calcium: experimental results and implications for lower extremity CT angiography. Acad Radiol 16:160–171PubMedCrossRefGoogle Scholar
  17. 17.
    Meyer BC, Werncke T, Hopfenmüller W, Raatschen HJ, Wolf KJ, Albrecht T (2008) Dual energy CT of peripheral arteries: effect of automatic bone and plaque removal on image quality and grading of stenoses. Eur J Radiol 68:414–422PubMedCrossRefGoogle Scholar
  18. 18.
    Sommer WH, Johnson TR, Becker CR, Arnoldi E, Kramer H, Reiser MF, Nikolaou K (2009) The value of dual-energy bone removal in maximum intensity projections of lower extremity computed tomography angiography. Invest Radiol 44:285–292PubMedCrossRefGoogle Scholar
  19. 19.
    Brockmann C, Jochum S, Sadick M, Huck K, Ziegler P, Fink C, Schoenberg SO, Diehl SJ (2009) Dual-energy CT angiography in peripheral arterial occlusive disease. Cardiovasc Interv Radiol 32:630–637CrossRefGoogle Scholar
  20. 20.
    Rutherford RB, Baker JD, Ernst C, Johnston KW, Porter JM, Ahn S, Jones DN (1997) Recommended standards for reports dealing with lower extremity ischemia: revised version. J Vasc Surg 26:517–538PubMedCrossRefGoogle Scholar
  21. 21.
    Landis JR, Koch GG (1977) An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics 33:363–374PubMedCrossRefGoogle Scholar
  22. 22.
    Silvennoinen HM, Ikonen S, Soinne L, Railo M, Valanne L (2007) CT angiographic analysis of carotid artery stenosis: comparison of manual assessment, semiautomatic vessel analysis, and digital subtraction angiography. AJNR Am J Neuroradiol 28:97–103PubMedCrossRefGoogle Scholar
  23. 23.
    Fink C, Johnson TR, Michaely HJ, Morhard D, Becker C, Reiser M, Nikolaou K (2008) Dual-energy CT angiography of the lung in patients with suspected pulmonary embolism: initial results. Rofo 180:879–883PubMedGoogle Scholar

Copyright information

© European Society of Radiology 2011

Authors and Affiliations

  • Thomas Kau
    • 1
    • 3
  • Wolfgang Eicher
    • 1
  • Christian Reiterer
    • 1
  • Martin Niedermayer
    • 1
  • Egon Rabitsch
    • 1
  • Birgit Senft
    • 2
  • Klaus A. Hausegger
    • 1
  1. 1.General Hospital of Klagenfurt, Institute of Diagnostic and Interventional RadiologyKlinikum KlagenfurtKlagenfurtAustria
  2. 2.Section of Statistics, Reha Clinic for Mental HealthKlagenfurtAustria
  3. 3.Klinikum Klagenfurt am Worthersee, RadiologieKlagenfurtAustria

Personalised recommendations