Advertisement

European Radiology

, Volume 21, Issue 8, pp 1779–1787 | Cite as

Flat-detector computed tomography in the assessment of intracranial stents: comparison with multi detector CT and conventional angiography in a new animal model

  • Tobias StruffertEmail author
  • Sabine Ott
  • Edyta Adamek
  • Marc Schwarz
  • Tobias Engelhorn
  • Stephan Kloska
  • Yu Deuerling-Zheng
  • Arnd Doerfler
Neuro

Abstract

Objective

Careful follow up is necessary after intracranial stenting because in-stent restenosis (ISR) or residual stenosis (RS) is not rare. A minimally invasive follow-up imaging technique is desirable. The objective was to compare the visualisation of stents in Flat Detector-CT Angiography (FD-CTA) after intravenous contrast medium injection (i.v.) with Multi Detector Computed Tomography Angiography (MD-CTA) and Digital Subtracted Angiography (DSA) in an animal model.

Methods

Stents were implanted in the carotid artery of 12 rabbits. In 6 a residual stenosis (RS) was surgically created. Imaging was performed using FD-CTA, MD-CTA and DSA. Measurements of the inner and outer diameter and cross-section area of the stents were performed. Stenosis grade was calculated.

Results

In subjective evaluation FD-CTA was superior to MD-CTA. FD-CTA was more accurate compared with DSA than MD-CTA. Cross-sectional area of the stent lumen was significantly larger (p < 0.05) in FD-CTA in comparison to MD-CTA. Accurate evaluation of stenosis was impossible in MD-CTA. There was no statistically significant difference in the stenosis grade of DSA and FD-CTA.

Conclusion

Our results show that visualisation of stent and stenosis using intravenous FD-CTA compares favourably with DSA and may replace DSA in the follow-up of patients treated with intracranial stents.

Keywords

Angiography Flat detector computed tomography Animal model Multislice computed tomography Intracranial stent 

Notes

Acknowledgement

The work described in this study was supported by a grant from the ELAN-Fonds, Erlangen, Germany (www.elan.uk-erlangen.de), Project number 07.07.18.1. Boston Scientific/Target supported our work by supporting stents and other angiographic equipment.

References

  1. 1.
    Bose A, Hartmann M, Henkes H, Liu HM, Teng MM, Szikora I et al (2007) A novel, self-expanding, nitinol stent in medically refractory intracranial atherosclerotic stenoses: the Wingspan study. Stroke 38:1531–1537PubMedCrossRefGoogle Scholar
  2. 2.
    Levy EI, Turk AS, Albuquerque FC, Niemann DB, Aagaard-Kienitz B, Pride L et al (2007) Wingspan in-stent restenosis and thrombosis: incidence, clinical presentation, and management. Neurosurgery 61:644–650PubMedCrossRefGoogle Scholar
  3. 3.
    Fiorella DJ, Levy EI, Turk AS, Albuquerque FC, Pride GL Jr, Woo HH et al (2009) Target lesion revascularization after wingspan: assessment of safety and durability. Stroke 40:106–110PubMedCrossRefGoogle Scholar
  4. 4.
    Trossbach M, Hartmann M, Braun C, Sartor K, Hähnel S (2004) Small vessel stents for intracranial angioplasty: in vitro evaluation of in-stent stenoses using CT angiography. Neuroradiology 46:459–463PubMedCrossRefGoogle Scholar
  5. 5.
    Willinsky RA, Taylor SM, TerBrugge K, Farb RI, Tomlinson G, Montanera W (2003) Neurologic complications of cerebral angiography: prospective analysis of 2, 899 procedures and review of the literature. Radiology 227:522–528PubMedCrossRefGoogle Scholar
  6. 6.
    Prabhakaran S, Warrior L, Wells KR, Jhaveri MD, Chen M, Lopes DK (2009) The utility of quantitative magnetic resonance angiography in the assessment of intracranial in-stent stenosis. Stroke 40:991–993PubMedCrossRefGoogle Scholar
  7. 7.
    Hähnel S, Trossbach M, Braun C, Heiland S, Knauth M, Sartor K et al (2003) Small-vessel stents for intracranial angioplasty: in vitro comparison of different stent designs and sizes by using CT angiography. AJNR Am J Neuroradiol 24:1512–1516PubMedGoogle Scholar
  8. 8.
    Turk AS, Rowley HA, Niemann DB, Fiorella D, Aagaard-Kienitz B, Pulfer K et al (2007) CT angiographic appearance of in-stent restenosis of intracranial arteries treated with the Wingspan stent. AJNR Am J Neuroradiol 28:1752–1754PubMedCrossRefGoogle Scholar
  9. 9.
    Maintz D, Seifarth H, Flohr T, Krämer S, Wichter T, Heindel W et al (2003) Improved coronary artery stent visualisation and in-stent stenosis detection using 16-slice computed-tomography and dedicated image reconstruction technique. Invest Radiol 38:790–795PubMedGoogle Scholar
  10. 10.
    Choo KS, Lee TH, Choi CH, Park KP, Kim CW, Kim S (2009) Assessment of the intracranial stents patency and re-stenosis by 16-slice ct angiography with optimized sharp kernel: preliminary study. J Korean Neurosurg Soc 45:284–288PubMedCrossRefGoogle Scholar
  11. 11.
    Kalender WA, Kyriakou Y (2007) Flat-detector computed tomography (FD-CT). Eur Radiol 17:2767–2779PubMedCrossRefGoogle Scholar
  12. 12.
    Benndorf G, Strother CM, Claus B, Naeini R, Morsi H, Klucznik R, Mawad ME (2005) Angiographic CT in cerebrovascular stenting. AJNR Am J Neuroradiol 26:1813–1818PubMedGoogle Scholar
  13. 13.
    Benndorf G, Klucznik RP, Strother CM (2006) Images in cardiovascular medicine: angiographic computed tomography for imaging of underdeployed intracranial stent. Circulation 114:e499–e500PubMedCrossRefGoogle Scholar
  14. 14.
    Richter G, Engelhorn T, Struffert T, Doelken M, Ganslandt O, Hornegger J et al (2007) Flat panel detector angiographic CT for stent-assisted coil embolization of broad-based cerebral aneurysms. AJNR Am J Neuroradiol 28:1902–1908PubMedCrossRefGoogle Scholar
  15. 15.
    Cloft HJ, Altes TA, Marx WF, Raible RJ, Hudson SB, Helm GA et al (1999) Endovascular creation of an in vivo bifurcation aneurysm model in rabbits. Radiology 213:223–228PubMedGoogle Scholar
  16. 16.
    Kallmes DF, Helm GA, Hudson SB, Altes TA, Do HM, Mandell JW et al (1999) Histologic evaluation of platinum coil embolization in an aneurysm model in rabbits. Radiology 213:217–222PubMedGoogle Scholar
  17. 17.
    Doerfler A, Becker W, Wanke I, Goericke S, Oezkan N, Forsting M (2004) Multimodal imaging in the elastase-induced aneurysm model in rabbits: a comparative study using serial DSA, MRA and CTA. Röfo 176:590–596PubMedGoogle Scholar
  18. 18.
    Struffert T, Roth C, Romeike B, Grunwald IQ, Reith W (2008) Onyx in an experimental aneurysm model: histological and angiographic results. J Neurosurg 109:77–82PubMedCrossRefGoogle Scholar
  19. 19.
    Struffert T, Doelken M, Adamek E, Schwarz M, Engelhorn T, Kloska S (2010) Flat-detector computed tomography with intravenous contrast material application in experimental aneurysms: comparison with multislice CT and conventional angiography. Acta Radiol 51:431–437PubMedCrossRefGoogle Scholar
  20. 20.
    Nguyen-Huynh MN, Wintermark M, English J, Lam J, Vittinghoff E, Smith WS et al (2008) How accurate is CT angiography in evaluating intracranial atherosclerotic disease? Stroke 39:1184–1188PubMedCrossRefGoogle Scholar
  21. 21.
    Struffert T, Eyupoglu IY, Huttner HB, Engelhorn T, Doelken M, Saake M et al (2010) Clinical evaluation of flat-panel detector compared with multislice computed tomography in 65 patients with acute intracranial hemorrhage: initial results. J Neurosurg 113:901–907PubMedCrossRefGoogle Scholar
  22. 22.
    Struffert T, Richter G, Engelhorn T, Doelken M, Goelitz P, Kalender WA et al (2009) Visualisation of intracerebral haemorrhage with flat-detector CT compared to multislice CT: results in 44 cases. Eur Radiol 19:619–625PubMedCrossRefGoogle Scholar
  23. 23.
    Struffert T, Deuerling-Zheng Y, Kloska S, Engelhorn T, Strother CM, Kalender WA et al (2010) Flat detector CT in the evaluation of brain parenchyma, intracranial vasculature, and cerebral blood volume: a pilot study in patients with acute symptoms of cerebral ischemia. AJNR Am J Neuroradiol 31:1462–1469PubMedCrossRefGoogle Scholar
  24. 24.
    Buhk JH, Lingor P, Knauth M (2008) Angiographic CT with intravenous administration of contrast medium is a noninvasive option for follow-up after intracranial stenting. Neuroradiology 50:349–354PubMedCrossRefGoogle Scholar
  25. 25.
    Struffert T, Kloska S, Engelhorn T, Deuerling-Zheng Y, Ott S, Doelken M et al (2011) Optimized intravenous flat detector CT for non-invasive visualisation of intracranial stents: first results. Eur Radiol 21:411–418PubMedCrossRefGoogle Scholar
  26. 26.
    Kühn AL, Roth C, Romeike B, Grunwald IQ (2009) Treatment of elastase-induced intracranial aneurysms in New Zealand white rabbits by use of a novel neurovascular embolization stent device. Neuroradiology. doi: 10.1007/s00234-009-0605-9 Google Scholar
  27. 27.
    Ahlhelm F, Roth C, Kaufmann R, Schulte-Altedorneburg G, Romeike BF, Reith W (2007) Treatment of wide-necked intracranial aneurysms with a novel self-expanding two-zonal endovascular stent device. Neuroradiology 49:1023–1028PubMedCrossRefGoogle Scholar
  28. 28.
    Ishii A, Viñuela F, Murayama Y, Yuki I, Nien YL, Yeh DT et al (2006) Swine model of carotid artery atherosclerosis: experimental induction by surgical partial ligation and dietary hypercholesterolemia. AJNR Am J Neuroradiol 27:1893–1899PubMedGoogle Scholar
  29. 29.
    Prell D, Kyriakou Y, Struffert T, Dörfler A, Kalender WA (2010) Metal artifact reduction for clipping and coiling in interventional C-arm CT. AJNR Am J Neuroradiol 31:634–639PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2011

Authors and Affiliations

  • Tobias Struffert
    • 1
    Email author
  • Sabine Ott
    • 1
  • Edyta Adamek
    • 1
  • Marc Schwarz
    • 1
  • Tobias Engelhorn
    • 1
  • Stephan Kloska
    • 1
  • Yu Deuerling-Zheng
    • 2
  • Arnd Doerfler
    • 1
  1. 1.Department of NeuroradiologyUniversity of Erlangen-NurembergErlangenGermany
  2. 2.Siemens AG, Healthcare SectorForchheimGermany

Personalised recommendations