European Radiology

, Volume 21, Issue 6, pp 1224–1232 | Cite as

Outcome analysis in 3,160 implantations of radiologically guided placements of totally implantable central venous port systems

  • Ulf K. M. TeichgräberEmail author
  • Stephan Kausche
  • Sebastian N. Nagel
  • Bernhard Gebauer



In this retrospective study the success and complication rates after radiologically guided port catheter implantation were evaluated.


Between 2000 and 2008, 3,160 port catheter systems were implanted in our interventional suite. All interventions were imaging guided. The puncture of the preferably right internal jugular vein (IJV) was ultrasound-assisted and the catheter tip position was controlled with fluoroscopy. Catheter indwelling time and rates of periprocedural, early and late complications were evaluated.


922,599 catheter days (mean, 292 days; range, 0–2,704 days) were documented. The implantation was successful in 3,153 (99.8%) cases. A total of 374 (11.8%; 0.41/1,000 catheter days) adverse events were recorded. Of these, 42 (1.33%) were periprocedural complications. 86 (3.3%; 0.09/1,000 catheter days) early and 246 (9.4%; 0.27/1,000 catheter days) late onset complications occurred after port implantation. The most common complications were blood stream infection (n = 134; 5.1%; 0.15/1,000 catheter days), catheter-induced venous thrombosis (n = 97; 3.7%; 0.11/1,000 catheter days) and catheter migration (n = 34; 1.3%; 0.04/1,000 catheter days). A total of 193 (6.1%) port explantations were required.


Ultrasound guided port implantation via the IJV results in low periprocedural complication rates


Central venous port implantation Indwelling time Ultrasound guidance Port systems Complications Fluoroscopic control 


  1. 1.
    Silberzweig JE, Sacks D, Khorsandi AS, Bakal CW (2000) Reporting standards for central venous access. Technology Assessment Committee. J Vasc Interv Radiol 11:391–400PubMedCrossRefGoogle Scholar
  2. 2.
    Niederhuber JE, Ensminger W, Gyves JW, Liepman M, Doan K, Cozzi E (1982) Totally implanted venous and arterial access system to replace external catheters in cancer treatment. Surgery 92:706–712PubMedGoogle Scholar
  3. 3.
    Kock HJ, Pietsch M, Krause U, Wilke H, Eigler FW (1998) Implantable vascular access systems: experience in 1500 patients with totally implanted central venous port systems. World J Surg 22:12–16PubMedCrossRefGoogle Scholar
  4. 4.
    Yeste Sanchez L, Galbis Caravajal JM, Fuster Diana CA, Moledo Eiras E (2006) Protocol for the implantation of a venous access device (Port-A-Cath System). The complications and solutions found in 560 cases. Clin Transl Oncol 8:735–741PubMedCrossRefGoogle Scholar
  5. 5.
    Biffi R, de Braud F, Orsi F et al (1998) Totally implantable central venous access ports for long-term chemotherapy. A prospective study analyzing complications and costs of 333 devices with a minimum follow-up of 180 days. Ann Oncol 9:767–773PubMedCrossRefGoogle Scholar
  6. 6.
    Lyon RD, Griggs KA, Johnson AM, Olsen JR (1999) Long-term follow-up of upper extremity implanted venous access devices in oncology patients. J Vasc Interv Radiol 10:463–471PubMedCrossRefGoogle Scholar
  7. 7.
    Teichgraber UK, Gebauer B, Benter T, Wagner J (2004) Long-term central venous lines and their complications. Rofo 176:944–952PubMedGoogle Scholar
  8. 8.
    Mueller BU, Skelton J, Callender DP et al (1992) A prospective randomized trial comparing the infectious and noninfectious complications of an externalized catheter versus a subcutaneously implanted device in cancer patients. J Clin Oncol 10:1943–1948PubMedGoogle Scholar
  9. 9.
    Pegues D, Axelrod P, McClarren C et al (1992) Comparison of infections in Hickman and implanted port catheters in adult solid tumor patients. J Surg Oncol 49:156–162PubMedCrossRefGoogle Scholar
  10. 10.
    Ng F, Mastoroudes H, Paul E et al (2007) A comparison of Hickman line- and Port-a-Cath-associated complications in patients with solid tumours undergoing chemotherapy. Clin Oncol 19:551–556CrossRefGoogle Scholar
  11. 11.
    Di Carlo I, Cordio S, La Greca G et al (2001) Totally implantable venous access devices implanted surgically: a retrospective study on early and late complications. Arch Surg 136:1050–1053PubMedCrossRefGoogle Scholar
  12. 12.
    Reeves AR, Seshadri R, Trerotola SO (2001) Recent trends in central venous catheter placement: a comparison of interventional radiology with other specialties. J Vasc Interv Radiol 12:1211–1214PubMedCrossRefGoogle Scholar
  13. 13.
    Adamus R, Beyer-Enke S, Otte P, Loose R (2002) Ultrasound-guided puncture of the subclavian vein to implant central venous ports. Rofo 174:1450–1453PubMedGoogle Scholar
  14. 14.
    Povoski SP (2000) A prospective analysis of the cephalic vein cutdown approach for chronic indwelling central venous access in 100 consecutive cancer patients. Ann Surg Oncol 7:496–502PubMedCrossRefGoogle Scholar
  15. 15.
    Araujo C, Silva JP, Antunes P et al (2008) A comparative study between two central veins for the introduction of totally implantable venous access devices in 1201 cancer patients. Ejso 34:222–226PubMedGoogle Scholar
  16. 16.
    Randolph AG, Cook DJ, Gonzales CA, Pribble CG (1996) Ultrasound guidance for placement of central venous catheters: a meta-analysis of the literature. Crit Care Med 24:2053–2058PubMedCrossRefGoogle Scholar
  17. 17.
    Funaki B (2002) Central venous access: a primer for the diagnostic radiologist. AJR Am J Roentgenol 179:309–318PubMedGoogle Scholar
  18. 18.
    Wagner HJ, Teichgraber U, Gebauer B, Kalinowski M (2003) Transjugular implantation of venous port catheter systems. Rofo 175:1539–1544PubMedGoogle Scholar
  19. 19.
    Teichgraber UK, Benter T, Gebel M, Manns MP (1997) A sonographically guided technique for central venous access. AJR Am J Roentgenol 169:731–733PubMedGoogle Scholar
  20. 20.
    Teichgraber UK, Benter T, Schultz HJ, Kluhs L, Gutberlet M, Felix R (2000) Ultrasonographically guided puncture technique for central venous vessels as a one-person technique. Ultraschall Med 21:132–136PubMedCrossRefGoogle Scholar
  21. 21.
    Lorch H, Zwaan M, Kagel C, Weiss HD (2001) Central venous access ports placed by interventional radiologists: experience with 125 consecutive patients. Cardiovasc Intervent Radiol 24:180–184PubMedCrossRefGoogle Scholar
  22. 22.
    Lorenz JM, Funaki B, Van Ha T, Leef JA (2001) Radiologic placement of implantable chest ports in pediatric patients. AJR Am J Roentgenol 176:991–994PubMedGoogle Scholar
  23. 23.
    Pittiruti M, Malerba M, Carriero C, Tazza L, Gui D (2000) Which is the easiest and safest technique for central venous access? A retrospective survey of more than 5, 400 cases. J Vasc Access 1:100–107PubMedGoogle Scholar
  24. 24.
    Gebauer B, El-Sheik M, Vogt M, Wagner HJ (2009) Combined ultrasound and fluoroscopy guided port catheter implantation–high success and low complication rate. Eur J Radiol 69:517–522PubMedCrossRefGoogle Scholar
  25. 25.
    Albo Lopez C, Lopez Rodriguez D, Constenla Camba MI, Jimenez Blanco A, Araujo LF, Garcia-Medina J (1999) Infectious and non-infectious complications of tunneled central catheters in hematologic patients. Sangre 44:176–181PubMedGoogle Scholar
  26. 26.
    Lim SH, Smith MP, Machin SJ, Goldstone AH (1993) A prospective randomized study of prophylactic teicoplanin to prevent early Hickman catheter-related sepsis in patients receiving intensive chemotherapy for haematological malignancies. Eur J Haematol Suppl 54:10–13PubMedGoogle Scholar
  27. 27.
    Graninger W, Assadian O, Lagler H, Ramharter M (2002) The role of glycopeptides in the treatment of intravascular catheter-related infections. Clin Microbiol Infect 8:310–315PubMedCrossRefGoogle Scholar
  28. 28.
    Seldinger SI (1953) Catheter replacement of the needle in percutaneous arteriography; a new technique. Acta Radiol 39:368–376PubMedCrossRefGoogle Scholar
  29. 29.
    O’Grady NP, Alexander M, Dellinger EP et al (2002) Guidelines for the prevention of intravascular catheter-related infections. Centers for Disease Control and Prevention. MMWR Recomm Rep 51(RR-10):1–29PubMedGoogle Scholar
  30. 30.
    Gebauer B BA, Wagner H-J (2008) Zentralvenöse Katheter: Diagnostik von Komplikationen und therapeutische Optionen [Central venous catheters: detection of catheter complications and therapeutical options.] Radiologie up2date 8:135–154Google Scholar
  31. 31.
    Teichgraber UK, Gebauer B, Benter T, Wagner HJ (2003) Central venous access catheters: radiological management of complications. Cardiovasc Intervent Radiol 26:321–333PubMedCrossRefGoogle Scholar
  32. 32.
    Yip D, Funaki B (2002) Subcutaneous chest ports via the internal jugular vein. A retrospective study of 117 oncology patients. Acta Radiol 43:371–375PubMedCrossRefGoogle Scholar
  33. 33.
    Sticca RP, Dewing BD, Harris JD (2009) Outcomes of surgical and radiologic placed implantable central venous access ports. Am J Surg 198:829–833PubMedCrossRefGoogle Scholar
  34. 34.
    Caers J, Fontaine C, Vinh-Hung V et al (2005) Catheter tip position as a risk factor for thrombosis associated with the use of subcutaneous infusion ports. Support Care Cancer 13:325–331PubMedCrossRefGoogle Scholar
  35. 35.
    Chen PT, Sung CS, Wang CC, Chan KH, Chang WK, Hsu WH (2007) Experience of anesthesiologists with percutaneous nonangiographic venous access. J Clin Anesth 19:609–615PubMedCrossRefGoogle Scholar
  36. 36.
    Biffi R, Orsi F, Pozzi S et al (2009) Best choice of central venous insertion site for the prevention of catheter-related complications in adult patients who need cancer therapy: a randomized trial. Annals of Oncology : official journal of the European Society for Medical Oncology 20:935–940Google Scholar
  37. 37.
    Stein M, Wagner RH (2005) Complications of central venous access devices: outcome analysis of 2359 implantations. Dtsch Med Wochenschr 130:1129–1132PubMedCrossRefGoogle Scholar
  38. 38.
    Biffi R, Pozzi S, Agazzi A et al (2004) Use of totally implantable central venous access ports for high-dose chemotherapy and peripheral blood stem cell transplantation: results of a monocentre series of 376 patients. Annals of Oncology : official Journal of the European Society for Medical Oncology 15:296–300Google Scholar
  39. 39.
    Vandoni RE, Guerra A, Sanna P, Bogen M, Cavalli F, Gertsch P (2009) Randomised comparison of complications from three different permanent central venous access systems. Swiss Med Wkly 139:313–316PubMedGoogle Scholar
  40. 40.
    Shetty PC, Mody MK, Kastan DJ et al (1997) Outcome of 350 implanted chest ports placed by interventional radiologists. J Vasc Interv Radiol 8:991–995PubMedCrossRefGoogle Scholar
  41. 41.
    Vardy J, Engelhardt K, Cox K et al (2004) Long-term outcome of radiological-guided insertion of implanted central venous access port devices (CVAPD) for the delivery of chemotherapy in cancer patients: institutional experience and review of the literature. Br J Cancer 91:1045–1049PubMedGoogle Scholar
  42. 42.
    Aitken DR, Minton JP (1984) The “pinch-off sign”: a warning of impending problems with permanent subclavian catheters. Am J Surg 148:633–636PubMedCrossRefGoogle Scholar
  43. 43.
    Hinke DH, Zandt-Stastny DA, Goodman LR, Quebbeman EJ, Krzywda EA, Andris DA (1990) Pinch-off syndrome: a complication of implantable subclavian venous access devices. Radiology 177:353–356PubMedGoogle Scholar
  44. 44.
    Biffi R, De Braud F, Orsi F et al (2001) A randomized, prospective trial of central venous ports connected to standard open-ended or Groshong catheters in adult oncology patients. Cancer 92:1204–1212PubMedCrossRefGoogle Scholar
  45. 45.
    Caridi JG, Hawkins IF Jr, Wiechmann BN, Pevarski DJ, Tonkin JC (1998) Sonographic guidance when using the right internal jugular vein for central vein access. AJR Am J Roentgenol 171:1259–1263PubMedGoogle Scholar
  46. 46.
    Sofocleous CT, Schur I, Cooper SG, Quintas JC, Brody L, Shelin R (1998) Sonographically guided placement of peripherally inserted central venous catheters: review of 355 procedures. AJR Am J Roentgenol 170:1613–1616PubMedGoogle Scholar
  47. 47.
    Liberman L, Hordof AJ, Hsu DT, Pass RH (2001) Ultrasound-assisted cannulation of the right internal jugular vein during electrophysiologic studies in children. J Interv Card Electrophysiol 5:177–179PubMedCrossRefGoogle Scholar
  48. 48.
    Mey U, Glasmacher A, Hahn C et al (2003) Evaluation of an ultrasound-guided technique for central venous access via the internal jugular vein in 493 patients. Support Care Cancer 11:148–155PubMedGoogle Scholar
  49. 49.
    Hind D, Calvert N, McWilliams R et al (2003) Ultrasonic locating devices for central venous cannulation: meta-analysis. BMJ 327:361PubMedCrossRefGoogle Scholar
  50. 50.
    Petersen J, Delaney JH, Brakstad MT, Rowbotham RK, Bagley CM Jr (1999) Silicone venous access devices positioned with their tips high in the superior vena cava are more likely to malfunction. Am J Surg 178:38–41PubMedCrossRefGoogle Scholar
  51. 51.
    DeChicco R, Seidner DL, Brun C, Steiger E, Stafford J, Lopez R (2007) Tip position of long-term central venous access devices used for parenteral nutrition. JPEN J Parenter Enteral Nutr 31:382–387PubMedCrossRefGoogle Scholar
  52. 52.
    Schutz JC, Patel AA, Clark TW et al (2004) Relationship between chest port catheter tip position and port malfunction after interventional radiologic placement. J Vasc Interv Radiol 15:581–587PubMedGoogle Scholar
  53. 53.
    Trerotola SO, Kuhn-Fulton J, Johnson MS, Shah H, Ambrosius WT, Kneebone PH (2000) Tunneled infusion catheters: increased incidence of symptomatic venous thrombosis after subclavian versus internal jugular venous access. Radiology 217:89–93PubMedGoogle Scholar
  54. 54.
    Ignatov A, Hoffman O, Smith B et al (2009) An 11-year retrospective study of totally implanted central venous access ports: complications and patient satisfaction. Eur J Surg Oncol 35:241–246PubMedGoogle Scholar
  55. 55.
    Hsieh CC, Weng HH, Huang WS et al (2009) Analysis of risk factors for central venous port failure in cancer patients. World J Gastroenterol 15:4709–4714PubMedCrossRefGoogle Scholar
  56. 56.
    Samaras P, Dold S, Braun J et al (2008) Infectious port complications are more frequent in younger patients with hematologic malignancies than in solid tumor patients. Oncology 74:237–244PubMedCrossRefGoogle Scholar
  57. 57.
    Wolosker N, Yazbek G, Nishinari K et al (2004) Totally implantable venous catheters for chemotherapy: experience in 500 patients. Sao Paulo Med J 122:147–151PubMedCrossRefGoogle Scholar
  58. 58.
    Hartkamp A, van Boxtel AJ, Zonnenberg BA, Witteveen PO (2000) Totally implantable venous access devices: evaluation of complications and a prospective comparative study of two different port systems. Neth J Med 57:215–223PubMedCrossRefGoogle Scholar
  59. 59.
    Funaki B, Szymski GX, Hackworth CA et al (1997) Radiologic placement of subcutaneous infusion chest ports for long-term central venous access. AJR Am J Roentgenol 169:1431–1434PubMedGoogle Scholar

Copyright information

© European Society of Radiology 2011

Authors and Affiliations

  • Ulf K. M. Teichgräber
    • 1
    • 2
    Email author
  • Stephan Kausche
    • 1
  • Sebastian N. Nagel
    • 1
  • Bernhard Gebauer
    • 1
  1. 1.Department of RadiologyCharité University HospitalBerlinGermany
  2. 2.Institut für Diagnostische und Interventionelle RadiologieCharité Universitätsmedizin BerlinBerlinGermany

Personalised recommendations