European Radiology

, Volume 21, Issue 2, pp 301–309 | Cite as

Simultaneous assessment of liver volume and whole liver fat content: a step towards one-stop shop preoperative MRI protocol

  • Gaspard d’Assignies
  • Claude Kauffmann
  • Yvan Boulanger
  • Marc Bilodeau
  • Valérie Vilgrain
  • Gilles Soulez
  • An TangEmail author
Magnetic Resonance



The purpose of this study was to evaluate the ability of a whole liver volume (WLV) segmentation algorithm to measure fat fraction (FF).


Twenty consecutive patients with histologically proven fatty liver disease underwent dual-echo in-phase/out-of-phase MRI and magnetic resonance spectroscopy (MRS) at 1.5 T. Two readers independently performed semiautomatic 3D liver segmentation on the out-of-phase sequences using an active contour model. FF was calculated for voxels, segments and WLV. Segmentation inter-observer reproducibility was assessed by intra-class correlation coefficient (ICC) for WLV and FF. Fat fraction correlation and agreement as determined by histology, MRS and MRI were determined.


ICC was 0.999 (95% CI: 0.999-1, P < 0.001) for WLV FF calculation and 0.996 (95% CI: 0.990–0.998, P < 0.001) for whole liver volume calculations. Strong correlations were found between FF measured by histology, MRS and WLV-MRI. A Bland-Altman analysis showed a good agreement between FF measured by MRS and WLV-MRI. No systematic variations of FF was found between segments when analyzed by ANOVA (F = 1.78, P = 0.096).


This study shows that a reproducible whole liver volume segmentation method to measure fat fraction can be performed. This strategy may be integrated to a “one-stop shop” protocol in liver surgery planning.


Liver fat Fatty liver disease MRI Liver segmentation Hepatic volume 



This work was supported by a clinical research scholarship to G.S. from Fonds de la recherche en santé du Québec (FRSQ) and to G.A. from the Société Française de Radiologie.


  1. 1.
    Massoptier L, Casciaro S (2008) A new fully automatic and robust algorithm for fast segmentation of liver tissue and tumors from CT scans. Eur Radiol 18:1658–1665CrossRefPubMedGoogle Scholar
  2. 2.
    Lee J, Kim N, Lee H et al (2007) Efficient liver segmentation using a level-set method with optimal detection of the initial liver boundary from level-set speed images. Comput Methods Programs Biomed 88:26–38CrossRefPubMedGoogle Scholar
  3. 3.
    Okada T, Shimada R, Sato Y et al (2007) Automated segmentation of the liver from 3D CT images using probabilistic atlas and multi-level statistical shape model. Med Image Comput Comput Assist Interv 10:86–93PubMedGoogle Scholar
  4. 4.
    Radtke A, Nadalin S, Sotiropoulos GC et al (2007) Computer-assisted operative planning in adult living donor liver transplantation: a new way to resolve the dilemma of the middle hepatic vein. World J Surg 31:175–185CrossRefPubMedGoogle Scholar
  5. 5.
    Hermoye L, Laamari-Azjal I, Cao Z et al (2005) Liver segmentation in living liver transplant donors: comparison of semiautomatic and manual methods. Radiology 234:171–178CrossRefPubMedGoogle Scholar
  6. 6.
    Gloger O, Kuhn J, Stanski A et al (2010) A fully automatic three-step liver segmentation method on LDA-based probability maps for multiple contrast MR images. Magn Reson Imaging 28(6):882–897CrossRefPubMedGoogle Scholar
  7. 7.
    Ferrero A, Vigano L, Polastri R et al (2007) Postoperative liver dysfunction and future remnant liver: where is the limit? Results of a prospective study. World J Surg 31:1643–1651CrossRefPubMedGoogle Scholar
  8. 8.
    Vetelainen R, van Vliet AK, van Gulik TM (2007) Severe steatosis increases hepatocellular injury and impairs liver regeneration in a rat model of partial hepatectomy. Ann Surg 245:44–50CrossRefPubMedGoogle Scholar
  9. 9.
    Vetelainen R, van Vliet A, Gouma DJ et al (2007) Steatosis as a risk factor in liver surgery. Ann Surg 245:20–30CrossRefPubMedGoogle Scholar
  10. 10.
    Vetelainen R, Bennink RJ, van Vliet AK et al (2007) Mild steatosis impairs functional recovery after liver resection in an experimental model. Br J Surg 94:1002–1008CrossRefPubMedGoogle Scholar
  11. 11.
    Baccarani U, Adani GL, Lorenzin D et al (2009) The role of steatosis of the liver graft in the development of post-transplant biliary complications. Transpl Int 23:239CrossRefPubMedGoogle Scholar
  12. 12.
    Ploeg RJ, D’Alessandro AM, Knechtle SJ et al (1993) Risk factors for primary dysfunction after liver transplantation–a multivariate analysis. Transplantation 55:807–813CrossRefPubMedGoogle Scholar
  13. 13.
    Fiorini RN, Kirtz J, Periyasamy B et al (2004) Development of an unbiased method for the estimation of liver steatosis. Clin Transplant 18:700–706CrossRefPubMedGoogle Scholar
  14. 14.
    El-Badry AM, Breitenstein S, Jochum W et al (2009) Assessment of hepatic steatosis by expert pathologists: the end of a gold standard. Ann Surg 250:691–697CrossRefPubMedGoogle Scholar
  15. 15.
    d’Assignies G, Ruel M, Khiat A et al (2009) Noninvasive quantitation of human liver steatosis using magnetic resonance and bioassay methods. Eur Radiol 19:2033–2040CrossRefPubMedGoogle Scholar
  16. 16.
    O’Regan DP, Callaghan MF, Wylezinska-Arridge M et al (2008) Liver fat content and T2*: simultaneous measurement by using breath-hold multiecho MR imaging at 3.0 T–feasibility. Radiology 247:550–557CrossRefPubMedGoogle Scholar
  17. 17.
    Kim H, Taksali SE, Dufour S et al (2008) Comparative MR study of hepatic fat quantification using single-voxel proton spectroscopy, two-point dixon and three-point IDEAL. Magn Reson Med 59:521–527CrossRefPubMedGoogle Scholar
  18. 18.
    Cowin GJ, Jonsson JR, Bauer JD et al (2008) Magnetic resonance imaging and spectroscopy for monitoring liver steatosis. J Magn Reson Imaging 28:937–945CrossRefPubMedGoogle Scholar
  19. 19.
    Marsman H, Matsushita T, Dierkhising R et al (2004) Assessment of donor liver steatosis: pathologist or automated software? Hum Pathol 35:430–435CrossRefPubMedGoogle Scholar
  20. 20.
    Szczepaniak LS, Nurenberg P, Leonard D et al (2005) Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab 288:E462–468CrossRefPubMedGoogle Scholar
  21. 21.
    Strunk H, Stuckmann G, Textor J et al (2003) Limitations and pitfalls of Couinaud’s segmentation of the liver in transaxial imaging. Eur Radiol 13:2472–2482CrossRefPubMedGoogle Scholar
  22. 22.
    Campadelli P, Casiraghi E, Esposito A (2009) Liver segmentation from computed tomography scans: a survey and a new algorithm. Artif Intell Med 45:185–196CrossRefPubMedGoogle Scholar
  23. 23.
    Cheng YF, Chen CL, Huang TL et al (2001) Single imaging modality evaluation of living donors in liver transplantation: magnetic resonance imaging. Transplantation 72:1527–1533CrossRefPubMedGoogle Scholar
  24. 24.
    Joy D, Thava VR, Scott BB (2003) Diagnosis of fatty liver disease: is biopsy necessary? Eur J Gastroenterol Hepatol 15:539–543CrossRefPubMedGoogle Scholar
  25. 25.
    Ratziu V, Charlotte F, Heurtier A et al (2005) Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology 128:1898–1906CrossRefPubMedGoogle Scholar
  26. 26.
    Guiu B, Petit JM, Loffroy R et al (2009) Quantification of liver fat content: comparison of triple-echo chemical shift gradient-echo imaging and in vivo proton MR spectroscopy. Radiology 250:95–102CrossRefPubMedGoogle Scholar
  27. 27.
    Guiu B, Loffroy R, Petit JM et al (2009) Mapping of liver fat with triple-echo gradient echo imaging: validation against 3.0-T proton MR spectroscopy. Eur Radiol 19:1786–1793CrossRefPubMedGoogle Scholar
  28. 28.
    Biglands JD (2007) Comparison of MRI and histopathalogic methods of quantifying hepatic fat fraction. ISMRM, BerlinGoogle Scholar
  29. 29.
    Longo R, Pollesello P, Ricci C et al (1995) Proton MR spectroscopy in quantitative in vivo determination of fat content in human liver steatosis. J Magn Reson Imaging 5:281–285CrossRefPubMedGoogle Scholar
  30. 30.
    Belghiti J, Ogata S (2005) Assessment of hepatic reserve for the indication of hepatic resection. J Hepatobiliary Pancreat Surg 12:1–3CrossRefPubMedGoogle Scholar
  31. 31.
    Frankel WL, Tranovich JG, Salter L et al (2002) The optimal number of donor biopsy sites to evaluate liver histology for transplantation. Liver Transplant 8:1044–1050CrossRefGoogle Scholar
  32. 32.
    Rinella ME, McCarthy R, Thakrar K et al (2003) Dual-echo, chemical shift gradient-echo magnetic resonance imaging to quantify hepatic steatosis: Implications for living liver donation. Liver Transplant 9:851–856CrossRefGoogle Scholar
  33. 33.
    Thomas EL, Hamilton G, Patel N et al (2005) Hepatic triglyceride content and its relation to body adiposity: a magnetic resonance imaging and proton magnetic resonance spectroscopy study. Gut 54:122–127CrossRefPubMedGoogle Scholar
  34. 34.
    Cotler SJ, Guzman G, Layden-Almer J et al (2007) Measurement of liver fat content using selective saturation at 3.0 T. J Magn Reson Imaging 25:743–748CrossRefPubMedGoogle Scholar
  35. 35.
    Bugianesi E (2007) Non-alcoholic steatohepatitis and cancer. Clin Liver Dis 11:191–207, x–xiCrossRefPubMedGoogle Scholar
  36. 36.
    Fulcher AS, Szucs RA, Bassignani MJ et al (2001) Right lobe living donor liver transplantation: preoperative evaluation of the donor with MR imaging. AJR Am J Roentgenol 176:1483–1491PubMedGoogle Scholar

Copyright information

© European Society of Radiology 2010

Authors and Affiliations

  • Gaspard d’Assignies
    • 1
    • 2
  • Claude Kauffmann
    • 3
  • Yvan Boulanger
    • 1
  • Marc Bilodeau
    • 4
  • Valérie Vilgrain
    • 2
  • Gilles Soulez
    • 3
  • An Tang
    • 1
    Email author
  1. 1.Department of Medical ImagingUniversity of Montreal and Centre de recherche, Centre hospitalier de l’Université de Montréal (CRCHUM), Hôpital Saint-LucMontréalCanada
  2. 2.Department of Radiology, Beaujon HospitalUniversité Paris VIIClichyFrance
  3. 3.Department of Medical ImagingUniversity of Montreal and CRCHUM, Hôpital Notre-DameMontréalCanada
  4. 4.Department of Gastroenterology and HepatologyUniversity of Montreal and CRCHUM, Hôpital Saint-LucMontréalCanada

Personalised recommendations