European Radiology

, Volume 21, Issue 2, pp 426–433 | Cite as

Diffusion tensor imaging and fibre tracking in cervical spondylotic myelopathy

  • Jean-François Budzik
  • Vincent Balbi
  • Vianney Le Thuc
  • Alain Duhamel
  • Richard Assaker
  • Anne CottenEmail author



To (1) obtain microstructural parameters (Fractional Anisotropy: FA, Mean Diffusivity: MD) of the cervical spinal cord in patients suffering from cervical spondylotic myelopathy (CSM) using tractography, (2) to compare DTI parameters with the clinical assessment of these patients (3) and with information issued from conventional sequences.


DTI was performed on 20 symptomatic patients with cervical spondylotic myelopathy, matched with 15 volunteers. FA and MD were calculated from tractography images at the C2-C3 level and compressed level in patients and at the C2-C3 and C4-C7 in controls. Patients were clinically evaluated using a self-administered questionnaire.


The FA values of patients were significantly lower at the compressed level than the FA of volunteers at the C4-C7 level. A significant positive correlation between FA at the compressed level and clinical assessment was demonstrated. Increased signal intensity on T2-weighted images did not correlate either with FA or MD values, or with any of the clinical scores.


FA values were significantly correlated with some of the patients’ clinical scores. High signal intensity of the spinal cord on T2 was not correlated either with the DTI parameters or with the clinical assessment, suggesting that FA is more sensitive than T2 imaging.


Diffusion tensor imaging Cervical spondylosis Tractography Clinical correlation Fractional nisotropy 



Diffusion Tensor Imaging


Diffusion Tensor


Cervical Spondylotic Myelopathy


Magnetic Resonance


Fractional Anisotropy


Mean Diffusivity


Apparent Diffusion Coefficient


Japanese Orthopaedic Association Cervical Myelopathy Evaluation Questionnaire


Region of Interest


Fibre Tracking (with Diffusion Tensor Imaging)



We thank Hélène Tostain for English manuscript corrections.


  1. 1.
    Chen CJ, Lyu RK, Lee ST et al (2001) Intramedullary high signal intensity on T2-weighted MR images in cervical spondylotic myelopathy: prediction of prognosis with type of intensity. Radiology 221:789–794CrossRefPubMedGoogle Scholar
  2. 2.
    Fernandez de Rota JJ, Meschian S, Fernandez de Rota A et al (2007) Cervical spondylotic myelopathy due to chronic compression: the role of signal intensity changes in magnetic resonance images. J Neurosurg Spine 6:17–22CrossRefPubMedGoogle Scholar
  3. 3.
    Suri A, Chabbra RP, Mehta VS et al (2003) Effect of intramedullary signal changes on the surgical outcome of patients with cervical spondylotic myelopathy. Spine J 3:33–45CrossRefPubMedGoogle Scholar
  4. 4.
    Rafael H (2003) Cervical spondylotic myelopathy: surgical results and factors affecting outcome with special reference to age differences. Neurosurgery 53:787, author reply 787–788CrossRefPubMedGoogle Scholar
  5. 5.
    Hamburger C, Büttner A, Uhl E (1997) The cross-sectional area of the cervical spinal canal in patients with cervical spondylotic myelopathy. Correlation of preoperative and postoperative area with clinical symptoms. Spine 1(22):1990–1994CrossRefGoogle Scholar
  6. 6.
    Matsunaga S, Sakou T, Taketomi E et al (1994) The natural course of myelopathy caused by ossification of the posterior longitudinal ligament in the cervical spine. Clin Orthop Relat Res 305:168–177CrossRefPubMedGoogle Scholar
  7. 7.
    Muhle C, Metzner J, Weinert D, Falliner A, Brinkmann G, Mehdorn MH, Heller M, Resnick D (1998) Classification system based on kinematic MR imaging in cervical spondylitic myelopathy. AJNR Am J Neuroradiol 19:1763–1771PubMedGoogle Scholar
  8. 8.
    Demir A, Ries M, Moonen CT et al (2003) Diffusion-weighted MR imaging with apparent diffusion coefficient and apparent diffusion tensor maps in cervical spondylotic myelopathy. Radiology 229:37–43CrossRefPubMedGoogle Scholar
  9. 9.
    Hori M, Okubo T, Aoki S et al (2006) Line scan diffusion tensor MRI at low magnetic field strength: feasibility study of cervical spondylotic myelopathy in an early clinical stage. J Magn Reson Imaging 23:183–188CrossRefPubMedGoogle Scholar
  10. 10.
    Mamata H, Jolesz FA, Maier SE (2005) Apparent diffusion coefficient and fractional anisotropy in spinal cord: age and cervical spondylosis-related changes. J Magn Reson Imaging 22:38–43CrossRefPubMedGoogle Scholar
  11. 11.
    Van Hecke W, Leemans A, Sijbers J et al (2008) A tracking-based diffusion tensor imaging segmentation method for the detection of diffusion-related changes of the cervical spinal cord with aging. J Magn Reson Imaging 27:978–991CrossRefPubMedGoogle Scholar
  12. 12.
    Fukui M, Chiba K, Kawakami M et al (2007) An outcome measure for patients with cervical myelopathy: Japanese Orthopaedic Association Cervical Myelopathy Evaluation Questionnaire (JOACMEQ): Part 1. J Orthop Sci 12:227–240CrossRefPubMedGoogle Scholar
  13. 13.
    Fukui M, Chiba K, Kawakami M et al (2007) Japanese Orthopaedic Association Cervical Myelopathy Evaluation Questionnaire: part 3. Determination of reliability. J Orthop Sci 12:321–326CrossRefPubMedGoogle Scholar
  14. 14.
    Westin CF, Maier SE, Mamata H et al (2002) Processing and visualization for diffusion tensor MRI. Med Image Anal 6:93–108CrossRefPubMedGoogle Scholar
  15. 15.
    Xu D, Mori S, Solaiyappan M et al (2002) A framework for callosal fiber distribution analysis. Neuroimage 17:1131–1143CrossRefPubMedGoogle Scholar
  16. 16.
    Le Bihan D, Mangin JF, Poupon C et al (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13:534–546CrossRefPubMedGoogle Scholar
  17. 17.
    Fermanian J (1984) Mesure de l’accord entre deux juges. Cas Qualitatif Rev Epidémiol Santé Publique 32:140–147Google Scholar
  18. 18.
    Facon D, Ozanne A, Fillard P et al (2005) MR diffusion tensor imaging and fiber tracking in spinal cord compression. AJNR Am J Neuroradiol 26:1587–1594PubMedGoogle Scholar
  19. 19.
    Vargas MI, Delavelle J, Jlassi H et al (2008) Clinical applications of diffusion tensor tractography of the spinal cord. Neuroradiology 50:25–29CrossRefPubMedGoogle Scholar
  20. 20.
    Ellingson BM, Ulmer JL, Kurpad SN et al (2008) Diffusion tensor MR imaging in chronic spinal cord injury. AJNR Am J Neuroradiol 29:1976–1982CrossRefPubMedGoogle Scholar
  21. 21.
    Shanmuganathan K, Gullapalli RP, Zhuo J et al (2008) Diffusion tensor MR imaging in cervical spine trauma. AJNR Am J Neuroradiol 29:655–659CrossRefPubMedGoogle Scholar
  22. 22.
    Ellingson BM, Ulmer JL, Kurpad SN et al (2008) Diffusion tensor MR imaging of the neurologically intact human spinal cord. AJNR Am J Neuroradiol 29:1279–1284CrossRefPubMedGoogle Scholar
  23. 23.
    Renoux J, Facon D, Fillard P et al (2006) MR diffusion tensor imaging and fiber tracking in inflammatory diseases of the spinal cord. AJNR Am J Neuroradiol 27:1947–1951PubMedGoogle Scholar
  24. 24.
    Lee JW, Kim JH, Kang HS et al (2006) Optimization of acquisition parameters of diffusion-tensor magnetic resonance imaging in the spinal cord. Invest Radiol 41:553–559CrossRefPubMedGoogle Scholar
  25. 25.
    Santarelli X, Garbin G, Ukmar M et al (2009) Dependence of the fractional anisotropy in cervical spine from the number of diffusion gradients, repeated acquisition and voxel size. Magn Reson Imaging 28:70–6CrossRefPubMedGoogle Scholar
  26. 26.
    Ito T, Oyanagi K, Takahashi H et al (1996) Cervical spondylotic myelopathy. Clinicopathologic study on the progression pattern and thin myelinated fibers of the lesions of seven patients examined during complete autopsy. Spine 21:827–833CrossRefPubMedGoogle Scholar
  27. 27.
    Ohshio I, Hatayama A, Kaneda K et al (1993) Correlation between histopathologic features and magnetic resonance images of spinal cord lesions. Spine 18:1140–1149CrossRefPubMedGoogle Scholar
  28. 28.
    Holly LT, Moftakhar P, Khoo LT et al (2008) Surgical outcomes of elderly patients with cervical spondylotic myelopathy. Surg Neurol 69:233–240CrossRefPubMedGoogle Scholar
  29. 29.
    Salvi FJ, Jones JC, Weigert BJ (2006) The assessment of cervical myelopathy. Spine J 6(6 Suppl):182S–189SCrossRefPubMedGoogle Scholar
  30. 30.
    Aota Y, Niwa T, Uesugi M et al (2008) The correlation of diffusion-weighted magnetic resonance imaging in cervical compression myelopathy with neurologic and radiologic severity. Spine 33:814–820CrossRefPubMedGoogle Scholar
  31. 31.
    Abe O, Aoki S, Hayashi N et al (2002) Normal aging in the central nervous system: quantitative MR diffusion-tensor analysis. Neurobiol Aging 23:433–441CrossRefPubMedGoogle Scholar
  32. 32.
    Peters A (2002) The effects of normal aging on myelin and nerve fibers: a review. J Neurocytol 31:581–593CrossRefPubMedGoogle Scholar
  33. 33.
    Morio Y, Teshima R, Nagashima H et al (2001) Correlation between operative outcomes of cervical compression myelopathy and MRI of the spinal cord. Spine 26:1238–1245CrossRefPubMedGoogle Scholar
  34. 34.
    Castillo M, Arbelaez A, Fisher LL, Smith JK et al (1999) Diffusion-weighted imaging in patients with cervical spondylosis. Int J Neuroradiol 5:79–85Google Scholar

Copyright information

© European Society of Radiology 2010

Authors and Affiliations

  • Jean-François Budzik
    • 1
  • Vincent Balbi
    • 1
  • Vianney Le Thuc
    • 1
  • Alain Duhamel
    • 2
  • Richard Assaker
    • 3
  • Anne Cotten
    • 1
    Email author
  1. 1.Service de Radiologie et d’Imagerie MusculosquelettiqueHôpital Roger SalengroLilleFrance
  2. 2.Université de LilleLilleFrance
  3. 3.Département de NeurochirurgieHôpital Roger SalengroLille CedexFrance

Personalised recommendations