Advertisement

European Radiology

, Volume 21, Issue 1, pp 1–10 | Cite as

Diffusion tensor magnetic resonance imaging of the breast: a pilot study

  • Pascal A. T. BaltzerEmail author
  • Anja Schäfer
  • Matthias Dietzel
  • David Grässel
  • Mieczyslaw Gajda
  • Oumar Camara
  • Werner A. Kaiser
Breast

Abstract

Objectives

Diffusion-weighted MR imaging has shown diagnostic value for differential diagnosis of breast lesions. Diffusion tensor imaging (DTI) adds information about tissue microstructure by addressing diffusion direction. We have examined the diagnostic application of DTI of the breast.

Methods

A total of 59 patients (71 lesions: 54 malignant, 17 benign) successfully underwent prospective echo planar imaging–DTI (EPI-DTI) (1.5 T). First, diffusion direction both of parenchyma as well as lesions was assessed on parametric maps. Subsequently, apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values were measured. Statistics included univariate (Mann–Whitney U test, receiver operating analysis) and multivariate (logistic regression analysis, LRA) tests.

Results

Main diffusion direction of parenchyma was anterior–posterior in the majority of cases (66.1%), whereas lesions (benign, malignant) showed no predominant diffusion direction in the majority of cases (23.9%). ADC values showed highest differences between benign and malignant lesions (P < 0.001) with resulting area under the curve (AUC) of 0.899. FA values were lower in benign (interquartile range, IR, 0.14–0.24) compared to malignant lesions (IR 0.21–0.35, P < 0.002) with an AUC of 0.751–0.770. Following LRA, FA did not prove to have incremental value for differential diagnosis over ADC values.

Conclusions

Microanatomical differences between benign and malignant breast lesions as well as breast parenchyma can be visualized by using DTI.

Keywords

Breast MRI Diffusion tensor MRI MR mammography Sensitivity and specificity 

References

  1. 1.
    Peters NH, Borel Rinkes IH, Zuithoff NP et al (2008) Meta-analysis of MR imaging in the diagnosis of breast lesions. Radiology 246:116–124CrossRefPubMedGoogle Scholar
  2. 2.
    Warner E, Messersmith H, Causer P et al (2008) Systematic review: using magnetic resonance imaging to screen women at high risk for breast cancer. Ann Intern Med 148:671–679PubMedGoogle Scholar
  3. 3.
    Kaiser WA, Zeitler E (1989) MR imaging of the breast: fast imaging sequences with and without Gd-DTPA. Preliminary observations. Radiology 170:681–686PubMedGoogle Scholar
  4. 4.
    Kuhl C (2007) The current status of breast MR imaging. Part I. Choice of technique, image interpretation, diagnostic accuracy, and transfer to clinical practice. Radiology 244:356–378CrossRefPubMedGoogle Scholar
  5. 5.
    Naumov GN, Bender E, Zurakowski D et al (2006) A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J Natl Cancer Inst 98:316–325CrossRefPubMedGoogle Scholar
  6. 6.
    Baltzer PA, Freiberg C, Beger S et al (2009) Clinical MR-mammography: are computer-assisted methods superior to visual or manual measurements for curve type analysis? A systematic approach. Acad Radiol 16:1070–1076CrossRefPubMedGoogle Scholar
  7. 7.
    Gibbs P, Liney GP, Lowry M et al (2004) Differentiation of benign and malignant sub-1 cm breast lesions using dynamic contrast enhanced MRI. Breast 13:115–121CrossRefPubMedGoogle Scholar
  8. 8.
    Siegmann KC, Muller-Schimpfle M, Schick F et al (2002) MR imaging-detected breast lesions: histopathologic correlation of lesion characteristics and signal intensity data. AJR Am J Roentgenol 178:1403–1409PubMedGoogle Scholar
  9. 9.
    Zwick S, Brix G, Tofts PS et al (2009) Simulation-based comparison of two approaches frequently used for dynamic contrast-enhanced MRI. Eur Radiol 20:432–442CrossRefPubMedGoogle Scholar
  10. 10.
    Tofts PS, Berkowitz B, Schnall MD (1995) Quantitative analysis of dynamic Gd-DTPA enhancement in breast tumors using a permeability model. Magn Reson Med 33:564–568CrossRefPubMedGoogle Scholar
  11. 11.
    Ikeda DM, Hylton NM, Kuhl CK et al (2003) MRI breast imaging reporting and data system atlas, 1st edn. American College of Radiology, RestonGoogle Scholar
  12. 12.
    Malich A, Fischer DR, Wurdinger S et al (2005) Potential MRI interpretation model: differentiation of benign from malignant breast masses. AJR Am J Roentgenol 185:964–970CrossRefPubMedGoogle Scholar
  13. 13.
    Mountford C, Ramadan S, Stanwell P et al (2009) Proton MRS of the breast in the clinical setting. NMR Biomed 22:54–64CrossRefPubMedGoogle Scholar
  14. 14.
    Schnall MD, Blume J, Bluemke DA et al (2006) Diagnostic architectural and dynamic features at breast MR imaging: multicenter study. Radiology 238:42–53CrossRefPubMedGoogle Scholar
  15. 15.
    Tsushima Y, Takahashi-Taketomi A, Endo K (2009) Magnetic resonance (MR) differential diagnosis of breast tumors using apparent diffusion coefficient (ADC) on 1.5-T. J Magn Reson Imaging 30:249–255CrossRefPubMedGoogle Scholar
  16. 16.
    Baltzer PA, Benndorf M, Dietzel M et al (2009) Sensitivity and specificity of unenhanced MR mammography (DWI combined with T2-weighted TSE imaging, ueMRM) for the differentiation of mass lesions. Eur Radiol 20:1101–1110CrossRefPubMedGoogle Scholar
  17. 17.
    Baltzer PA, Dietzel M, Vag T et al (2009) Diffusion weighted imaging - useful in all kinds of lesions? A systematic review. Eur Radiol 19:765–769CrossRefGoogle Scholar
  18. 18.
    Baltzer PA, Renz DM, Herrmann KH et al (2009) Diffusion-weighted imaging (DWI) in MR mammography (MRM): clinical comparison of echo planar imaging (EPI) and half-Fourier single-shot turbo spin echo (HASTE) diffusion techniques. Eur Radiol 19:1612–1620CrossRefPubMedGoogle Scholar
  19. 19.
    Guo Y, Cai YQ, Cai ZL et al (2002) Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J Magn Reson Imaging 16:172–178CrossRefPubMedGoogle Scholar
  20. 20.
    Hatakenaka M, Soeda H, Yabuuchi H et al (2008) Apparent diffusion coefficients of breast tumors: clinical application. Magn Reson Med Sci 7:23–29CrossRefPubMedGoogle Scholar
  21. 21.
    Kinoshita T, Yashiro N, Ihara N et al (2002) Diffusion-weighted half-Fourier single-shot turbo spin echo imaging in breast tumors: differentiation of invasive ductal carcinoma from fibroadenoma. J Comput Assist Tomogr 26:1042–1046CrossRefPubMedGoogle Scholar
  22. 22.
    Kuroki Y, Nasu K, Kuroki S et al (2004) Diffusion-weighted imaging of breast cancer with the sensitivity encoding technique: analysis of the apparent diffusion coefficient value. Magn Reson Med Sci 3:79–85CrossRefPubMedGoogle Scholar
  23. 23.
    Kuroki-Suzuki S, Kuroki Y, Nasu K et al (2007) Detecting breast cancer with non-contrast MR imaging: combining diffusion-weighted and STIR imaging. Magn Reson Med Sci 6:21–27CrossRefPubMedGoogle Scholar
  24. 24.
    Marini C, Iacconi C, Giannelli M et al (2007) Quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesion. Eur Radiol 17:2646–2655CrossRefPubMedGoogle Scholar
  25. 25.
    Park MJ, Cha ES, Kang BJ et al (2007) The role of diffusion-weighted imaging and the apparent diffusion coefficient (ADC) values for breast tumors. Korean J Radiol 8:390–396CrossRefPubMedGoogle Scholar
  26. 26.
    Rubesova E, Grell AS, De Maertelaer V et al (2006) Quantitative diffusion imaging in breast cancer: a clinical prospective study. J Magn Reson Imaging 24:319–324CrossRefPubMedGoogle Scholar
  27. 27.
    Wenkel E, Geppert C, Schulz-Wendtland R et al (2007) Diffusion weighted imaging in breast MRI: comparison of two different pulse sequences. Acad Radiol 14:1077–1083CrossRefPubMedGoogle Scholar
  28. 28.
    Woodhams R, Kakita S, Hata H et al (2009) Diffusion-weighted imaging of mucinous carcinoma of the breast: evaluation of apparent diffusion coefficient and signal intensity in correlation with histologic findings. AJR Am J Roentgenol 193:260–266CrossRefPubMedGoogle Scholar
  29. 29.
    Woodhams R, Matsunaga K, Iwabuchi K et al (2005) Diffusion-weighted imaging of malignant breast tumors: the usefulness of apparent diffusion coefficient (ADC) value and ADC map for the detection of malignant breast tumors and evaluation of cancer extension. J Comput Assist Tomogr 29:644–649CrossRefPubMedGoogle Scholar
  30. 30.
    Woodhams R, Matsunaga K, Kan S et al (2005) ADC mapping of benign and malignant breast tumors. Magn Reson Med Sci 4:35–42CrossRefPubMedGoogle Scholar
  31. 31.
    Charles-Edwards EM, deSouza NM (2006) Diffusion-weighted magnetic resonance imaging and its application to cancer. Cancer Imaging 6:135–143CrossRefPubMedGoogle Scholar
  32. 32.
    Hagmann P, Jonasson L, Maeder P et al (2006) Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics 26(Suppl 1):S205–S223CrossRefPubMedGoogle Scholar
  33. 33.
    Partridge SC, Murthy RS, Ziadloo A et al (2010) Diffusion tensor magnetic resonance imaging of the normal breast. Magn Reson Imaging 28:320–328CrossRefPubMedGoogle Scholar
  34. 34.
    Partridge SC, Ziadloo A, Murthy R et al (2010) Diffusion tensor MRI: preliminary anisotropy measures and mapping of breast tumors. J Magn Reson Imaging 31:339–347CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2010

Authors and Affiliations

  • Pascal A. T. Baltzer
    • 1
    Email author
  • Anja Schäfer
    • 1
  • Matthias Dietzel
    • 1
  • David Grässel
    • 2
  • Mieczyslaw Gajda
    • 3
  • Oumar Camara
    • 4
  • Werner A. Kaiser
    • 1
  1. 1.Institute of Diagnostic and Interventional RadiologyFriedrich Schiller University JenaJenaGermany
  2. 2.Institut für Neurowissenschaften & Medizin (INM-1)Forschungszentrum Jülich GmbHJülichGermany
  3. 3.Institute of PathologyFriedrich Schiller University JenaJenaGermany
  4. 4.Clinic of GynecologyFriedrich Schiller University JenaJenaGermany

Personalised recommendations