European Radiology

, Volume 20, Issue 12, pp 2925–2932 | Cite as

Regional impairment of 18F-FDG uptake in the cervical spinal cord in patients with monosegmental chronic cervical myelopathy

  • Frank Willi Floeth
  • Gabriele Stoffels
  • Jörg Herdmann
  • Paul Jansen
  • Wolfgang Meyer
  • Hans-Jakob Steiger
  • Karl-Josef Langen
Head and Neck

Abstract

Objective

The aim of this preliminary report was to assess glucose metabolism in the cervical spine of patients with chronic compressive myelopathy by using FDG PET.

Methods

Ten patients with monosegmental chronic degenerative stenosis and local cord compression of the upper/middle cervical spine with signs of myelopathy on MRI and 10 control patients without known cervical abnormalities were investigated by FDG PET. Maximum standardised uptake values (SUVmax) were measured at all levels of the cervical spine (C1–C7).

Results

While the controls showed the typical pattern of homogeneous linear FDG uptake along the entire cervical cord, the patients with chronic compressive myelopathy had a normal glucose utilisation only above the level of stenosis and a significant decrease in FDG uptake below their individual level of cord compression. This may be caused by atrophy of anterior grey horn cells and the loss of glucose-consuming neurons below the level of cord compression.

Conclusion

FDG PET of the spine of patients with chronic compressive myelopathy may be helpful to determine the stage and severity of cervical myelopathy.

Keywords

FDG PET Cervical spinal cord Cervical myelopathy Degenerative spinal stenosis 

References

  1. 1.
    Boakye M, Patil CG, Santarelli J et al (2008) Cervical spondylotic myelopathy: complications and outcomes after spinal fusion. Neurosurgery 62:455–461CrossRefPubMedGoogle Scholar
  2. 2.
    Alafifi T, Kern R, Fehlings M (2007) Clinical and MRI predictors of outcome after surgical intervention for cervical spondylotic myelopathy. J Neuroimaging 17:315–322CrossRefPubMedGoogle Scholar
  3. 3.
    Kato Y, Kataoka H, Ichihara K et al (2008) Biomechanical study of cervical flexion myelopathy using a three-dimensional finite element method. J Neurosurg Spine 8:436–441CrossRefPubMedGoogle Scholar
  4. 4.
    Ito T, Oyanagi K, Takahashi H et al (1996) Cervical spondylotic myelopathy. Clinicopathologic study on the progression pattern and thin myelinated fibers of the lesions of seven patients examined during complete autopsy. Spine 21:827–833CrossRefPubMedGoogle Scholar
  5. 5.
    Gilbert JW, Wheeler GR, Spitalieri JR et al (2008) Prognosis in spine surgery. J Neurosurg Spine 8:498–499CrossRefPubMedGoogle Scholar
  6. 6.
    Mastronardi L, Elsawaf A, Roperto R et al (2007) Prognostic relevance of the postoperative evolution of intramedullary spinal cord changes in signal intensity on magnetic resonance imaging after anterior decompression for cervical spondylotic myelopathy. J Neurosurg Spine 7:615–622CrossRefPubMedGoogle Scholar
  7. 7.
    Fernández de Rota JJ, Meschian S, Fernández de Rota A et al (2007) Cervical spondylotic myelopathy due to chronic compression: the role of signal intensity changes in magnetic resonance images. J Neurosurg Spine 6:17–22CrossRefPubMedGoogle Scholar
  8. 8.
    Suri A, Chabbra RP, Mehta VS et al (2003) Effect of intramedullary signal changes on the surgical outcome of patients with cervical spondylotic myelopathy. Spine J 3:33–45CrossRefPubMedGoogle Scholar
  9. 9.
    Uchida K, Nakajima H, Yayama T et al (2009) High-resolution magnetic resonance imaging and 18FDG-PET findings of the cervical spinal cord before and after decompressive surgery in patients with compressive myelopathy. Spine 34:1185–1191CrossRefPubMedGoogle Scholar
  10. 10.
    Uchida K, Kobayashi S, Yayama T et al (2004) Metabolic neuroimaging of the cervical spinal cord in patients with compressive myelopathy: a high-resolution positron emission tomography study. J Neurosurg Spine 1:72–79CrossRefPubMedGoogle Scholar
  11. 11.
    Baba H, Uchida K, Sadato N et al (1999) Potential usefulness of 18F-2-fluoro-deoxy-D-glucose positron emission tomography in cervical compressive myelopathy. Spine 24:1449–1454CrossRefPubMedGoogle Scholar
  12. 12.
    Kamoto Y, Sadato N, Yonekura Y et al (1998) Visualization of the cervical spinal cord with FDG and high-resolution PET. J Comput Assist Tomogr 22:487–491CrossRefPubMedGoogle Scholar
  13. 13.
    Japanese Orthopaedic Association (1976) Criteria on the evaluation of treatment of cervical myelopathy. J Jpn Orthop 49:addenda no. 5Google Scholar
  14. 14.
    Nguyen NC, Sayed MM, Taalab K et al (2008) Spinal cord metastases from lung cancer: detection with F-18 FDG PET/CT. Clin Nucl Med 33:356–358CrossRefPubMedGoogle Scholar
  15. 15.
    Francken AB, Hong AM, Fulham MJ et al (2005) Detection of unsuspected spinal cord compression in melanoma patients by 18F-fluorodeoxyglucose-positron emission tomography. Eur J Surg Oncol 31:197–204CrossRefPubMedGoogle Scholar
  16. 16.
    Metser U, Lerman H, Blank A et al (2004) Malignant involvement of the spine: assessment by 18F-FDG PET/CT. J Nucl Med 45:279–284PubMedGoogle Scholar
  17. 17.
    Komori T, Delbeke D (2001) Leptomeningeal carcinomatosis and intramedullary spinal cord metastases from lung cancer: detection with FDG positron emission tomography. Clin Nucl Med 26:905–907CrossRefPubMedGoogle Scholar
  18. 18.
    Poggi MM, Patronas N, Buttman JA et al (2001) Intramedullary spinal cord metastasis from renal cell carcinoma: detection by positron emission tomography. Clin Nucl Med 26:837–839CrossRefPubMedGoogle Scholar
  19. 19.
    Wilmshurst JM, Barrington SF, Pritchard D et al (2000) Positron emission tomography in imaging spinal cord tumors. J Child Neurol 15:465–472CrossRefPubMedGoogle Scholar
  20. 20.
    Meltzer CC, Townsend DW, Kottapally S et al (1998) FDG imaging of spinal cord primitive neuroectodermal tumor. J Nucl Med 39:1207–1209PubMedGoogle Scholar
  21. 21.
    Di Chiro G, Oldfield E, Bairamian D et al (1983) Metabolic imaging of the brain stem and spinal cord: studies with positron emission tomography using 18F-2-deoxyglucose in normal and pathological cases. J Comput Assist Tomogr 7:937–945CrossRefPubMedGoogle Scholar
  22. 22.
    Gemmel F, Dumarey N, Palestro CJ (2006) Radionuclide imaging of spinal infections. Eur J Nucl Med Mol Imaging 33:1226–1237CrossRefPubMedGoogle Scholar
  23. 23.
    Popovich T, Carpenter JS, Rai AT et al (2006) Spinal cord compression by tophaceous gout with fluorodeoxyglucose-positron-emission tomographic/MR fusion imaging. AJNR Am J Neuroradiol 27:1201–1203PubMedGoogle Scholar
  24. 24.
    Ota K, Tsunemi T, Saito K et al (2009) (18)F-FDG PET successfully detects spinal cord sarcoidosis. J Neurol 256:1943–1946CrossRefPubMedGoogle Scholar
  25. 25.
    Dubey N, Miletich RS, Wasay M et al (2002) Role of fluorodeoxyglucose positron emission tomography in the diagnosis of neurosarcoidosis. J Neurol Sci 205:77–81CrossRefPubMedGoogle Scholar
  26. 26.
    Uchida K, Nakajima H, Takamura T et al (2009) Neurological improvement associated with resolution of irradiation-induced myelopathy: serial magnetic resonance imaging and positron emission tomography findings. J Neuroimaging 19:274–276CrossRefPubMedGoogle Scholar
  27. 27.
    Chamroonrat W, Posteraro A, El-Haddad G et al (2005) Radiation myelopathy visualized as increased FDG uptake on positron emission tomography. Clin Nucl Med 30:560CrossRefPubMedGoogle Scholar
  28. 28.
    Esik O, Emri M, Szakáll S Jr et al (2004) PET identifies transitional metabolic change in the spinal cord following a subthreshold dose of irradiation. Pathol Oncol Res 10:42–46CrossRefPubMedGoogle Scholar
  29. 29.
    Esik O, Csere T, Stefanits K et al (2003) Increased metabolic activity in the spinal cord of patients with long-standing Lhermitte’s sign. Strahlenther Onkol 179:690–693CrossRefPubMedGoogle Scholar
  30. 30.
    Nakamoto Y, Tatsumi M, Hammoud D et al (2005) Normal FDG distribution patterns in the head and neck: PET/CT evaluation. Radiology 234:879–885CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2010

Authors and Affiliations

  • Frank Willi Floeth
    • 1
    • 4
  • Gabriele Stoffels
    • 2
  • Jörg Herdmann
    • 1
    • 4
  • Paul Jansen
    • 3
  • Wolfgang Meyer
    • 3
  • Hans-Jakob Steiger
    • 1
  • Karl-Josef Langen
    • 2
    • 5
  1. 1.Department of NeurosurgeryHeinrich Heine UniversityDüsseldorfGermany
  2. 2.Institute of Neuroscience and MedicineForschungszentrum JülichJülichGermany
  3. 3.Central Institute of Applied MathematicsForschungszentrum JülichJülichGermany
  4. 4.Department of Spine and PainSt. Vinzenz HospitalDüsseldorfGermany
  5. 5.Institute of Neuroscience and Medicine, INM-4 (Brain Imaging Physics)Forschungszentrum JülichJülichGermany

Personalised recommendations