European Radiology

, Volume 20, Issue 12, pp 2899–2906 | Cite as

Early response assessment in patients with multiple myeloma during anti-angiogenic therapy using arterial spin labelling: first clinical results

  • Michael Fenchel
  • Marina Konaktchieva
  • Katja Weisel
  • Sabina Kraus
  • Harald Brodoefel
  • Claus D. Claussen
  • Marius Horger
Oncology

Abstract

Objective

To determine if arterial-spin-labelling (ASL) MRI can reliably detect early response to anti-angiogenic therapy in patients with multiple myeloma by comparison with clinical/haematological response.

Methods

Nineteen consecutive patients (10 men; mean age 63.5 ± 9.1 years) were included in the present study. Inclusion criteria were diagnosis of stage III multiple myeloma and clinical indication for therapeutical administration of bortezomib or lenalidomide. We performed MRI on 3.0T MR in the baseline setting, 3 weeks after onset of therapy and after 8 weeks. Clinical responses were determined on the basis of international uniform response criteria in correlation with haematological parameters and medium-term patient outcome. MRI studies were performed after approval by the local institutional review board.

Results

Fifteen patients responded to anti-myeloma therapy; 4/19 patients were non-responders to therapy. Mean tumour perfusion assessed by ASL-MRI in a reference lesion was 220.7 ± 132.5 ml min−1 100 g−1 at baseline, and decreased to 125.7 ± 86.3 (134.5 ± 150.9) ml min−1 100 g−1 3 (8) weeks after onset of therapy (P < 0.02). The mean decrease in paraproteinaemia at week 3 (8) was 52.3 ± 47.7% (58.2 ± 58.7%), whereas β2-microglobulinaemia decreased by 20.3 ± 53.1% (23.3 ± 57.0%). Correlation of ASL perfusion with outcome was significant (P = 0.0037).

Conclusion

ASL tumour perfusion measurements are a valuable surrogate parameter for early assessment of response to novel anti-angiogenic therapy.

Keywords

MRI ASL Perfusion Multiple myeloma Bortezomib 

References

  1. 1.
    Kumar S, Fonseca R, Dispenzieri A et al (2002) Bone marrow angiogenesis in multiple myeloma: effect of therapy. Br J Haematol 119:665–671CrossRefPubMedGoogle Scholar
  2. 2.
    Pruneri G, Ponzoni M, Ferreri AJ et al (2002) Microvessel density, a surrogate marker of angiogenesis, is significantly related to survival in multiple myeloma patients. Br J Haematol 118:817–820CrossRefPubMedGoogle Scholar
  3. 3.
    Lin C, Luciani A, Belhadj K et al (2009) Patients with plasma cell disorders examined at whole-body dynamic contrast-enhanced MR imaging: initial experience. Radiology 250:905–915CrossRefPubMedGoogle Scholar
  4. 4.
    Pollock JM, Tan H, Kraft RA et al (2009) Arterial spin-labeled MR perfusion imaging: clinical applications. Magn Reson Imaging Clin N Am 17:315–338CrossRefPubMedGoogle Scholar
  5. 5.
    Blade J, Samson D, Reece D et al (1998) Criteria for evaluating disease response and progression in patients with multiple myeloma treated by high-dose therapy and haemopoietic stem cell transplantation. Myeloma Subcommittee of the EBMT. European Group for Blood and Marrow Transplant. Br J Haematol 102:1115–1123CrossRefPubMedGoogle Scholar
  6. 6.
    Montazel J, Divine M, Lepage E et al (2003) Normal spinal bone marrow in adults: dynamic gadolinium-enhanced MR imaging. Radiology 229:703–709CrossRefPubMedGoogle Scholar
  7. 7.
    Takeuchi M, Matsuzaki K Nishitani H (2009) Diffusion-weighted magnetic resonance imaging of endometrial cancer: differentiation from benign endometrial lesions and preoperative assessment of myometrial invasion. Acta Radiol 1:1–7Google Scholar
  8. 8.
    Kyle RA, Rajkumar SV (2004) Multiple myeloma. N Engl J Med 28(351):1860–1873CrossRefGoogle Scholar
  9. 9.
    Anderson KC (2003) Multiple myeloma: how far have we come? Mayo Clin Proc 78:15–17CrossRefPubMedGoogle Scholar
  10. 10.
    Attal M, Harousseau JL, Facon T et al (2003) Single versus double autologous stem-cell transplantation for multiple myeloma. N Engl J Med 349:2495–2502CrossRefPubMedGoogle Scholar
  11. 11.
    Hideshima T, Anderson KC (2002) Molecular mechanisms of novel therapeutic approaches for multiple myeloma. Nat Rev Cancer 2:927–937CrossRefPubMedGoogle Scholar
  12. 12.
    Richardson PG, Sonneveld P, Schuster MW et al (2005) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352:2487–2498CrossRefPubMedGoogle Scholar
  13. 13.
    Richardson PG, Barlogie B, Berenson J et al (2003) A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 348:2609–2617CrossRefPubMedGoogle Scholar
  14. 14.
    Richardson PG, Schlossman RL, Weller E et al (2002) Immunomodulatory drug CC-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma. Blood 100:3063–3067CrossRefPubMedGoogle Scholar
  15. 15.
    Davies FE, Raje N, Hideshima T et al (2001) Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood 98:210–216CrossRefPubMedGoogle Scholar
  16. 16.
    Hideshima T, Chauhan D, Shima Y et al (2000) Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy. Blood 96:2943–2950PubMedGoogle Scholar
  17. 17.
    Horger M, Pereira P, Claussen CD et al (2008) Hyperattenuating bone marrow abnormalities in myeloma patients using whole-body non-enhanced low-dose MDCT: correlation with haematological parameters. Br J Radiol 81:386–396CrossRefPubMedGoogle Scholar
  18. 18.
    Walker R, Barlogie B, Haessler J et al (2007) Magnetic resonance imaging in multiple myeloma: diagnostic and clinical implications. J Clin Oncol 25:1121–1128CrossRefPubMedGoogle Scholar
  19. 19.
    Angtuaco EJ, Fassas AB, Walker R et al (2004) Multiple myeloma: clinical review and diagnostic imaging. Radiology 231:11–23CrossRefPubMedGoogle Scholar
  20. 20.
    Warmuth C, Gunther M, Zimmer C (2003) Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology 228:523–532CrossRefPubMedGoogle Scholar
  21. 21.
    Schor-Bardach R, Alsop DC, Pedrosa I et al (2009) Does arterial spin-labeling MR imaging–measured tumor perfusion correlate with renal cell cancer response to antiangiogenic therapy in a mouse model? Radiology 251:731–742CrossRefPubMedGoogle Scholar
  22. 22.
    Rahmouni A, Montazel JL, Divine M et al (2003) Bone marrow with diffuse tumor infiltration in patients with lymphoproliferative diseases: dynamic gadolinium-enhanced MR imaging. Radiology 229:710–717CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2010

Authors and Affiliations

  • Michael Fenchel
    • 1
    • 2
  • Marina Konaktchieva
    • 3
  • Katja Weisel
    • 4
  • Sabina Kraus
    • 4
  • Harald Brodoefel
    • 1
  • Claus D. Claussen
    • 1
  • Marius Horger
    • 1
  1. 1.Department of Diagnostic and Interventional RadiologyEberhard-Karls UniversityTuebingenGermany
  2. 2.Department of Diagnostic and Interventional NeuroradiologyEberhard-Karls UniversityTuebingenGermany
  3. 3.Department of Internal Medicine, GastroenterologyEberhard-Karls UniversityTuebingenGermany
  4. 4.Department of Internal Medicine, HematologyEberhard-Karls UniversityTuebingenGermany

Personalised recommendations