Advertisement

European Radiology

, Volume 20, Issue 12, pp 2862–2869 | Cite as

Magnetic resonance imaging of the fetal gallbladder and bile

  • Peter C. BruggerEmail author
  • Michael Weber
  • Daniela Prayer
Pediatric

Abstract

Objective

To study the magnetic resonance imaging (MRI) appearance of the fetal gallbladder with special reference to fetal gallbladder sludge.

Methods

In a retrospective study of 512 fetuses without gastrointestinal abnormalities, we classified the gallbladder MR appearances into patterns based on the signal intensity (SI) of bile on T1-weighted and T2-weighted sequences. We analysed the ratio of T1-weighted SI of bile. Maximum gallbladder width was correlated with gestational weeks (GW) using non-linear regression analysis and compared between various imaging patterns with one-way ANOVA.

Results

Five age-dependent patterns of the MRI appearance were found: (1) SI of bile was T2-weighted hyperintense and T1-weighted hypointense (78.5%); (2) presented with T2-weighted hyperintensity and T1-weighted signal isointense to liver (10.4%); (3) moderate hyperintense T2-weighted SI, T1-weighted SI hyperintense to liver (4.9%); (4) SI was T2-weighted isointense and T1-weighted hyperintense to liver (3.7%); (5) pronounced T2-weighted hypointensity and marked T1-weighted hyperintensity (2.5%). Pattern 1 was exclusively found before 27 GW, while patterns 2-5 increased in frequency after 30 GW.

Conclusion

The MRI appearance of the fetal gallbladder is variable; fetal bile shows age-dependent SI changes that may cause non-visualisation of the gallbladder. This may be due to sludge and/or accumulation of paramagnetic substances suspended within gallbladder mucus.

Keywords

Fetus Gallbladder Bile Sludge MRI 

References

  1. 1.
    Saguintaah M, Couture A, Veyrac C, Baud C, Quere MP (2002) MRI of the fetal gastrointestinal tract. Pediatr Radiol 32:395–404CrossRefPubMedGoogle Scholar
  2. 2.
    Veyrac C, Couture A, Saguintaah M, Baud C (2004) MRI of fetal GI tract abnormalities. Abdom Imaging 29:411–420CrossRefPubMedGoogle Scholar
  3. 3.
    Brugger PC, Prayer D (2006) Fetal abdominal magnetic resonance imaging. Eur J Radiol 57:278–293CrossRefPubMedGoogle Scholar
  4. 4.
    Bronshtein M, Weiner Z, Abramovici H, Filmar S, Erlik Y, Blumenfeld Z (1993) Prenatal diagnosis of gall bladder anomalies—report of 17 cases. Prenat Diagn 13:851–861CrossRefPubMedGoogle Scholar
  5. 5.
    Boughanim M, Benachi A, Dreux S, Delahaye S, Muller F (2008) Nonvisualization of the fetal gallbladder by second-trimester ultrasound scan: strategy of clinical management based on four examples. Prenat Diagn 28:46–48CrossRefPubMedGoogle Scholar
  6. 6.
    Brown LD, Teele LR, Doubilet MP (1992) Echogenic material in the fetal gallbladder: sonographic and clinical observations. Radiology 182:73–76PubMedGoogle Scholar
  7. 7.
    Devonald KJ, Ellwood DA, Colditz PB (1992) The variable appearances of fetal gallstones. Ultrasound med 11:579–585Google Scholar
  8. 8.
    Suma V, Marini A, Bucci N, Toffolutti T, Talenti E (1998) Fetal gallstones: sonographic and clinical observations. Ultrasound Obstet Gynecol 12:439–441CrossRefPubMedGoogle Scholar
  9. 9.
    Chan L, Rao BK, Jiang Y, Endicott B, Wapner RJ, Reece EA (1995) Fetal gallbladder growth and development during gestation. J Ultrasound Med 14:421–425PubMedGoogle Scholar
  10. 10.
    Dialini V, Metha T, Levine D (2005) MR imaging of the fetal Abdomen and Pelvis. In: Levine D (ed) Atlas of fetal MRI. Taylor and Francis, Boca Raton London New York Singapore, pp 113–138Google Scholar
  11. 11.
    Huisman TA, Kellenberger CJ (2008) MR imaging characteristics of the normal fetal gastrointestinal tract and abdomen. Eur J Radiol 65:170–181CrossRefPubMedGoogle Scholar
  12. 12.
    Wheeler HO (1971) Concentrating function of the gallbladder. Am J Med 51:588–595CrossRefPubMedGoogle Scholar
  13. 13.
    Mattison DR, Kay HH, Miller RK, Angtuaco T (1988) Magnetic resonance imaging: a noninvasive tool for fetal and placental physiology. Biol Reprod 38:39–49CrossRefPubMedGoogle Scholar
  14. 14.
    Laitio M, Nevalainen T (1972) Scanning and transmission electron microscope observations on human gallbladder epithelium. II. Foetal development. Z Anat Entwicklungsgesch 136:326–335CrossRefPubMedGoogle Scholar
  15. 15.
    Koga A (1973) Electron microscopic observations on the mucous secretory activity of the human gallbladder epithelium. Z Zellforsch Mikrosk Anat 139:463–471CrossRefPubMedGoogle Scholar
  16. 16.
    Lehtonen L, Svedstrom E, Kero P, Korvenranta H (1993) Gall bladder contractility in preterm infants. Arch Dis Child 68:43–45CrossRefPubMedGoogle Scholar
  17. 17.
    Ho ML, Chen JY, Ling UP, Su PH (1998) Gallbladder volume and contractility in term and preterm neonates: normal values and clinical applications in ultrasonography. Acta Paediatr Scand 87:799–804CrossRefGoogle Scholar
  18. 18.
    Tanaka Y, Senoh D, Hata T (2000) Is there a human fetal gallbladder contractility during pregnancy? Hum Reprod 15:1400–1402CrossRefPubMedGoogle Scholar
  19. 19.
    Catalano OA, Sahani DV, Kalva SP, Cushing MS, Hahn PF, Brown JJ, Edelman RR (2008) MR imaging of the gallbladder: a pictorial essay. Radiographics 28:135–155CrossRefPubMedGoogle Scholar
  20. 20.
    Lee NK, Kim S, Lee JW, Lee SH, Kang DH, Kim DU, Kim GH, Seo HI (2009) MR appearance of normal and abnormal bile: Correlation with imaging and endoscopic finding. Eur J Radiol. doi: 10.1016/j.ejrad.2009.1005.1050 Google Scholar
  21. 21.
    Allen B, Bernhoft R, Blanckaert N, Svanvik J, Filly R, Gooding G, Way L (1981) Sludge is calcium bilirubinate associated with bile stasis. Am J Surg 141:51–56CrossRefPubMedGoogle Scholar
  22. 22.
    Ko CW, Schulte SJ, Lee SP (2005) Biliary sludge is formed by modification of hepatic bile by the gallbladder mucosa. Clin Gastroenterol Hepatol 3:672–678CrossRefPubMedGoogle Scholar
  23. 23.
    Lee SP, Nicholls JF (1986) Nature and composition of biliary sludge. Gastroenterology 90:677–686PubMedGoogle Scholar
  24. 24.
    Lester R, St Pyrek J, Little JM, Adcock EW (1983) Diversity of bile acids in the fetus and newborn infant. J Pediatr Gastroenterol Nutr 2:355–364PubMedGoogle Scholar
  25. 25.
    Blumenthal SG, Stucker T, Rasmussen RD, Ikeda RM, Ruebner BH, Bergstrom DE, Hanson FW (1980) Changes in bilirubins in human prenatal development. Biochem J 186:693–700PubMedGoogle Scholar
  26. 26.
    Miller EB, Kanabrocki EL, Case LF, Graham LA, Fields T, Oester YT, Kaplan E (1967) Non-dialyzable manganese, copper and sodium in human bile. J Nucl Med 8:891–895Google Scholar
  27. 27.
    Greenberg DM, Copp DH, Cuthbertson EM (1943) Studies in mineral metabolism with the aid of artificial radioactive isotopes VII. The distribution and excretion, particularly by way of the bile, of iron, cobalt, and manganese. J Biol Chem 147:749–756Google Scholar
  28. 28.
    Widdowson EM, Chan H, Harrison GE, Milner RGD (1972) Accumulation of Cu, Zn, Mn, Cr, and Co in the human liver before birth. Biol Neonate 20:360–367CrossRefPubMedGoogle Scholar
  29. 29.
    Casey CE, Robinson MF (1978) Copper, manganese, zinc, nickel, cadmium and lead in human foetal tissues. Br J Nutr 39:639–646CrossRefPubMedGoogle Scholar
  30. 30.
    Friel JK, Matthew JD, Andrews WL, Skinner CT (1989) Trace elements in meconium from preterm and full-term infants. Biol Neonate 55:214–217CrossRefPubMedGoogle Scholar
  31. 31.
    Haram-Mourabet S, Harper RG, Wapnir RA (1998) Mineral composition of meconium: effect of prematurity. J Am Coll Nutr 17:356–360PubMedGoogle Scholar
  32. 32.
    Dörner K, Dziadzka S, Höhn A, Sievers E, Oldigs HD, Schulz-Lell G, Schaub J (1989) Longitudinal manganese and copper balances in young infants and preterm infants fed on breast-milk and adapted cow’s milk formulas. Br J Nutr 61:559–572CrossRefPubMedGoogle Scholar
  33. 33.
    Widdowson EM (1969) Trace elements in human development. In: Barltrop D, Burland WL (eds) Mineral metabolism in paediatrics. Blackwell, Oxford, pp 85–98Google Scholar
  34. 34.
    Hiraishi K, Narabayashi I, Fujita O, Yamamoto K, Sagami A, Hisada Y, Saika Y, Adachi I, Hasegawa H (1995) Blueberry juice: preliminary evaluation as an oral contrast agent in gastrointestinal MR imaging. Radiology 194:119–123PubMedGoogle Scholar
  35. 35.
    Ukaji M, Ebara M, Tsuchiya Y, Kato H, Fukuda H, Sugiura N, Saisho H (2002) Diagnosis of gallstone composition in magnetic resonance imaging: in vitro analysis. Eur J Radiol 41:49–56CrossRefPubMedGoogle Scholar
  36. 36.
    Thomsen HS, Loegager V, Noerrgaard H, Chabanova E, Moller J, Sonne J (2005) Oral manganese for liver and bile imaging. Acad Radiol 1(Suppl 12):S21–S23CrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2010

Authors and Affiliations

  • Peter C. Brugger
    • 1
    Email author
  • Michael Weber
    • 2
  • Daniela Prayer
    • 3
  1. 1.Integrative Morphology Group, Center for Anatomy and Cell BiologyMedical University of ViennaViennaAustria
  2. 2.Department of RadiologyMedical University of ViennaViennaAustria
  3. 3.Department of Radiology, Division of Neuroradiology and Musculoskeletal RadiologyMedical University of ViennaViennaAustria

Personalised recommendations