Advertisement

European Radiology

, Volume 20, Issue 11, pp 2656–2662 | Cite as

Robot arm based flat panel CT-guided electromagnetic tracked spine interventions: phantom and animal model experiments

  • Tobias PenzkoferEmail author
  • Peter Isfort
  • Philipp Bruners
  • Christian Wiemann
  • Yiannis Kyriakou
  • Willi A. Kalender
  • Rolf W. Günther
  • Thomas Schmitz-Rode
  • Andreas H. Mahnken
Interventional

Abstract

Purpose:

To evaluate accuracy and procedure times of electromagnetic tracking (EMT) in a robotic arm mounted flat panel setting using phantom and animal cadaveric models.

Methods and materials:

A robotic arm mounted flat panel (RMFP) was used in combination with EMT to perform anthropomorphic phantom (n = 90) and ex vivo pig based punctures (n = 120) of lumbar facet joints (FJ, n = 120) and intervertebral discs (IVD, n = 90). Procedure accuracies and times were assessed and evaluated.

Results:

FJ punctures were carried out with a spatial accuracy of 0.8 ± 0.9 mm (phantom) and 0.6 ± 0.8 mm (ex vivo) respectively. While IVD punctures showed puncture deviations of 0.6 ± 1.2 mm (phantom) and 0.5 ± 0.6 mm (ex vivo), direct and angulated phantom based punctures had accuracies of 0.8 ± 0.9 mm and 1.0 ± 1.3 mm. Planning took longer for ex vivo IVD punctures compared to phantom model interventions (39.3 ± 17.3 s vs. 20.8 ± 5.0 s, p = 0.001) and for angulated vs. direct phantom FJ punctures (19.7 ± 5.1 s vs. 28.6 ± 7.8 s, p < 0.001). Puncture times were longer for ex vivo procedures when compared to phantom model procedures in both FJ (37.9 ± 9.0 s vs. 23.6 ± 7.2 s, p = 0.001) and IVD punctures (43.9 ± 16.1 s vs. 31.1 ± 6.4 s, p = 0.026).

Conclusion:

The combination of RMFP with EMT provides an accurate method of navigation for spinal interventions such as facet joint punctures and intervertebral disc punctures.

Keywords

Flat detector CT Electromagnetic navigation Spinal interventions Robotics Interventional radiology 

Notes

Acknowledgements

This work has been funded in part by the German Ministry for Education and Research (BMBF) in the framework of the OrthoMIT project under grant no. 01EQ0402. Equipment and material for this study were provided by CAS innovations, Siemens Healthcare, Erlangen, Germany. The authors collaborate in research with Medtronic.

References

  1. 1.
    Bale R, Widmann G (2007) Navigated CT-guided interventions. Minim Invasive Ther Allied Technol 16:196–204. doi: 10.1080/13645700701520578 CrossRefPubMedGoogle Scholar
  2. 2.
    Silverman SG, Tuncali K, Adams DF, Nawfel RD, Zou KH, Judy PF (1999) CT fluoroscopy-guided abdominal interventions: techniques, results, and radiation exposure. Radiology 212:673–681PubMedGoogle Scholar
  3. 3.
    Krombach GA, Mahnken A, Tacke J, Staatz G, Haller S, Nolte-Ernsting CC, Meyer J, Haage P, Gunther RW (2001) US-guided nephrostomy with the aid of a magnetic field-based navigation device in the porcine pelvicaliceal system. J Vasc Interv Radiol 12:623–628CrossRefPubMedGoogle Scholar
  4. 4.
    Bruners P, Penzkofer T, Nagel M, Elfring R, Gronloh N, Schmitz-Rode T, Günther RW, Mahnken AH (2009) Electromagnetic tracking for CT-guided spine interventions: phantom, ex-vivo and in-vivo results. Eur Radiol 19:990–994. doi: 10.1007/s00330-008-1227-z CrossRefPubMedGoogle Scholar
  5. 5.
    Nagel M, Hoheisel M, Bill U, Klingenbeck-Regn K, Kalender WA, Petzold R (2008) Electromagnetic tracking system for minimal invasive interventions using a C-arm system with CT option: first clinical results. In: Medical imaging 2008: visualization, image-guided procedures, and modeling. SPIE, San DiegoGoogle Scholar
  6. 6.
    Kalender WA, Kyriakou Y (2007) Flat-detector computed tomography (FD-CT). Eur Radiol 17:2767–2779. doi: 10.1007/s00330-007-0651-9 CrossRefPubMedGoogle Scholar
  7. 7.
    Vogl TJ, Naguib NN, Nour-Eldin NE, Lehnert T, Mbalisike E (2009) C-arm computed tomography for transarterial chemoperfusion and chemo-embolization of thoracic lesions. Radiologe 49:837–841. doi: 10.1007/s00117-009-1863-6 CrossRefPubMedGoogle Scholar
  8. 8.
    Meyer BC, Peter O, Nagel M, Hoheisel M, Frericks BB, Wolf KJ, Wacker FK (2008) Electromagnetic field-based navigation for percutaneous punctures on C-arm CT: experimental evaluation and clinical application. Eur Radiol 18:2855–2864. doi: 10.1007/s00330-008-1063-1 CrossRefPubMedGoogle Scholar
  9. 9.
    Wood BJ, Zhang H, Durrani A, Glossop N, Ranjan S, Lindisch D, Levy E, Banovac F, Borgert J, Krueger S, Kruecker J, Viswanathan A, Cleary K (2005) Navigation with electromagnetic tracking for interventional radiology procedures: a feasibility study. J Vasc Interv Radiol 16:493–505. doi: 10.1097/01.RVI.0000148827.62296.B4 PubMedGoogle Scholar
  10. 10.
    Yaniv Z, Wilson E, Lindisch D, Cleary K (2009) Electromagnetic tracking in the clinical environment. Med Phys 36:876–892CrossRefPubMedGoogle Scholar
  11. 11.
    Zhang J, Weir V, Fajardo L, Lin J, Hsiung H, Ritenour ER (2009) Dosimetric characterization of a cone-beam O-arm imaging system. J Xray Sci Technol 17:305–317. doi: 10.3233/XST-2009-0231 PubMedGoogle Scholar
  12. 12.
    Nagel M, Hoheisel M, Petzold R, Kalender WA, Krause UHW (2007) Needle and catheter navigation using electromagnetic tracking for computer-assisted C-arm CT interventions. In: Medical imaging: visualization and image-guided procedures. SPIE, San DiegoGoogle Scholar

Copyright information

© European Society of Radiology 2010

Authors and Affiliations

  • Tobias Penzkofer
    • 1
    • 2
    Email author
  • Peter Isfort
    • 1
    • 2
  • Philipp Bruners
    • 1
    • 2
  • Christian Wiemann
    • 2
  • Yiannis Kyriakou
    • 3
  • Willi A. Kalender
    • 3
  • Rolf W. Günther
    • 2
  • Thomas Schmitz-Rode
    • 1
  • Andreas H. Mahnken
    • 1
    • 2
  1. 1.Applied Medical Engineering, Helmholtz-Institute AachenRWTH Aachen UniversityAachenGermany
  2. 2.Department of Diagnostic Radiology, Aachen University HospitalRWTH Aachen UniversityAachenGermany
  3. 3.Institute for Medical PhysicsFriedrich-Alexander University of Erlangen-NurembergErlangenGermany

Personalised recommendations