Advertisement

European Radiology

, Volume 20, Issue 11, pp 2679–2689 | Cite as

Multiparameter MRI assessment of normal-appearing and diseased vertebral bone marrow

  • Andreas Biffar
  • Andrea Baur-Melnyk
  • Gerwin P. Schmidt
  • Maximilian F. Reiser
  • Olaf Dietrich
Magnetic Resonance

Abstract

Objective:

To evaluate spin-lattice (T1) and spin-spin (T2) relaxation times as well as apparent diffusion coefficients (ADCs) of the fat and water components in the vertebral bone marrow (vBM) of patients with benign and malignant lesions.

Methods:

Forty-four patients were examined at 1.5 T: there were 24 osteoporotic vertebral fractures (15 women, 9 men; median age: 73, 48–86 years) and 20 malignant vertebral infiltrations (9 women, 11 men; median age: 60, 25–87). Relaxation times were determined separately for the water and the fat component using a saturation-recovery technique for T1 and measurements with variable echo times for T2. ADCs were determined with a diffusion-weighted (DW) echo-planar imaging (EPI) and a single-shot turbo-spin-echo (ssTSE) sequence.

Results:

T1 of the water component and ADCs were significantly increased in the lesions compared with normal-appearing vBM (malignant: 1,252 vs. 828 ms, osteoporotic: 1,315 vs. 872 ms). ADCs determined with the DW-ssTSE were significantly increased compared with the DW-EPI. ADCs determined with the DW-ssTSE differed significantly between osteoporotic and malignant lesions \( \left( {1.74\;{\hbox{vs}}\;{1}{.35} \times {10} ^{ - 3}\,{\hbox{m}}{{\hbox{m}}^2}/{\hbox{s}}} \right) \).

Conclusions:

All parameters exhibit significant differences between normal-appearing vBM and the lesions. However, only the ADCs determined with the DW-ssTSE differed significantly between osteoporotic fractures and malignant lesions, potentially allowing for a differential diagnosis of these two entities.

Keywords

Magnetic resonance imaging Relaxation times Diffusion Vertebral bone marrow Vertebral fractures 

Notes

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG), grant no. DI 1413/1-1.

References

  1. 1.
    Vogler JB, Murphy WA (1988) Bone marrow imaging. Radiology 168:679–693PubMedGoogle Scholar
  2. 2.
    Wehrli FW, MacFall JR, Shutts D et al (1984) Mechanisms of contrast in NMR imaging. J Comput Assist Tomogr 8:369–380CrossRefPubMedGoogle Scholar
  3. 3.
    Vande Berg CV, Malghem J, Lecouvet FE et al (1998) Magnetic resonance imaging of the normal bone marrow. Skeletal Radiol 27:471–483CrossRefPubMedGoogle Scholar
  4. 4.
    Bottomley PA, Foster TH, Argesersinger RE et al (1984) A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1–100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys 11:425–448CrossRefPubMedGoogle Scholar
  5. 5.
    Dooms GC, Fisher MR, Hricak H et al (1985) Bone marrow imaging: magnetic resonance studies related to age and sex. Radiology 155:429–432PubMedGoogle Scholar
  6. 6.
    Richards MA, Webb JA, Jewell SE (1988) In-vivo measurement of spin lattice relaxation time (T1) of bone marrow in healthy volunteers: the effects of age and sex. Br J Radiol 61:30–33CrossRefPubMedGoogle Scholar
  7. 7.
    De Bazelaire CMJ, Duhamel G, Rofsky NM et al (2004) MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0T: preliminary results. Radiology 230:652–659CrossRefPubMedGoogle Scholar
  8. 8.
    Dietrich O, Herlihy A, Dannels WR et al (2001) Diffusion-weighted imaging of the spine using radial k-space trajectories. MAGMA MagnReson Mater Phy 12:23–31CrossRefPubMedGoogle Scholar
  9. 9.
    Byun WM, Shin SO, Chang Y et al (2002) Diffusion-weighted MR imaging of metastatic disease of the spine: assessment of response to therapy. AJNR Am J Neuroradiol 23:906–912PubMedGoogle Scholar
  10. 10.
    Bammer R, Herneth AM, Maier SE et al (2003) Line scan diffusion imaging of the spine. AJNR Am J Neuroradiol 24:5–12PubMedGoogle Scholar
  11. 11.
    Yeung DKW, Wong SYS, Griffith JF et al (2004) Bone marrow diffusion in osteoporosis: evaluation with quantitative MR diffusion imaging. J Magn Reson Imaging 19:222–228CrossRefPubMedGoogle Scholar
  12. 12.
    Griffith JF, Yeung DKW, Antonio GE et al (2006) Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology 241:831–838CrossRefPubMedGoogle Scholar
  13. 13.
    Ward R, Caruthers S, Yablon C et al (2000) Analysis of diffusion changes in posttraumatic bone marrow using navigator-corrected diffusion gradients. AJR Am J Roentgenol 174:731–734PubMedGoogle Scholar
  14. 14.
    Träber F, Block W, Layer G et al (1996) Determination of 1H relaxation times of water in human bone marrow by fat-suppressed turbo spin echo in comparison to MR spectroscopic methods. J Magn Reson Imaging 6:541–548CrossRefPubMedGoogle Scholar
  15. 15.
    Gold GE, Han E, Stainsby J et al (2004) Musculoskeletal MRI at 3.0 T: relaxation times and image contrast. AJR Am J Roentgenol 183:343–351PubMedGoogle Scholar
  16. 16.
    Frager D, Elkin C, Swerdlow M (1988) Subacute osteoporotic compression fracture: misleading magnetic resonance appearance. Skeletal Radiol 17:123–126CrossRefPubMedGoogle Scholar
  17. 17.
    Yuh WT, Zachar CK, Barloon TJ et al (1989) Vertebral compression fractures: distinction between benign and malignant causes with MR imaging. Radiology 172:215–218PubMedGoogle Scholar
  18. 18.
    Baker LL, Goodman SB, Perkash I (1990) Benign versus pathologic compression fractures of vertebral bodies: assessment with conventional spin-echo, chemical-shift, and STIR MR imaging. Radiology 174:495–502PubMedGoogle Scholar
  19. 19.
    Rupp RE, Ebraheim NA, Coombs RJ (1995) Magnetic resonance imaging differentiation of compression spine fractures or vertebral lesions caused by osteoporosis or tumor. Spine 20:499–503CrossRefGoogle Scholar
  20. 20.
    Cuenod CA, Laredo JD, Chevret S et al (1996) Acute vertebral collapse due to osteoporosis or malignancy: appearance on unenhanced and gadolinium-enhanced MR images. Radiology 199:541–549PubMedGoogle Scholar
  21. 21.
    Shih TT, Huang KM, Li YW (1999) Solitary vertebral collapse: distinction between benign and malignant causes using MR patterns. J Magn Reson Imaging 9:635–642CrossRefPubMedGoogle Scholar
  22. 22.
    Jung H, Jee W, McCauley TR et al (2003) Discrimination of metastatic from acute osteoporotic compression spinal fractures with MR imaging. Radiographics 23:179–187CrossRefPubMedGoogle Scholar
  23. 23.
    Sugimura K, Yamasaki K, Kitagaki H et al (1987) Bone marrow diseases of the spine: differentiation with T1 and T2 relaxation times in MR imaging. Radiology 165:541–544PubMedGoogle Scholar
  24. 24.
    Sundaram M, McGuire MH, Schajowicz F (1987) Soft-tissue masses: histologic basis for decreased signal (short T2) on T2-weighted MR images. AJR Am J Roentgenol 148:1247–1250PubMedGoogle Scholar
  25. 25.
    Herneth AM, Naude J, Philipp M et al (2000) The value of diffusion-weighted MRT in assessing the bone marrow changes in vertebral metastases. Radiologe 40:731–736CrossRefPubMedGoogle Scholar
  26. 26.
    Chan JHM, Peh WCG, Tsui EYK et al (2002) Acute vertebral body compression fractures: discrimination between benign and malignant causes using apparent diffusion coefficients. Br J Radiol 75:207–214PubMedGoogle Scholar
  27. 27.
    Zhou XJ, Leeds NE, McKinnon GC et al (2002) Characterization of benign and metastatic vertebral compression fractures with quantitative diffusion MR imaging. AJNR Am J Neuroradiol 23:165–170PubMedGoogle Scholar
  28. 28.
    Maeda M, Sakuma H, Maier SE et al (2003) Quantitative assessment of diffusion abnormalities in benign and malignant vertebral compression fractures by line scan diffusion-weighted imaging. AJR Am J Roentgenol 181:1203–1209PubMedGoogle Scholar
  29. 29.
    Oner AY, Tali T, Celikyay F et al (2007) Diffusion-weighted imaging of the spine with a non-Carr-Purcell-Meiboom-Gill single-shot fast spin-echo sequence: initial experience. AJNR Am J Neuroradiol 28:575–580CrossRefPubMedGoogle Scholar
  30. 30.
    Raya JG, Dietrich O, Birkenmaier C et al (2007) Feasibility of a RARE-based sequence for quantitative diffusion-weighted MRI of the spine. Eur Radiol 17:2872–2879CrossRefPubMedGoogle Scholar
  31. 31.
    Balliu E, Vilanova JC, Peláez I et al (2009) Diagnostic value of apparent diffusion coefficients to differentiate benign from malignant vertebral bone marrow lesions. Eur J Radiol 69:560–566CrossRefPubMedGoogle Scholar
  32. 32.
    Sourbron S, Biffar A, Ingrisch M et al (2009) PMI: Platform for Research in Medical Imaging. ESMRMB09 Antalya, 2009 MAGMA Magn Reson Mater Phy. 22 (Suppl. 1):539Google Scholar
  33. 33.
    Crawley AP, Henkelman RM (1988) A comparison of one-shot and recovery methods in T1 imaging. Magn Reson Med 7:23–34CrossRefPubMedGoogle Scholar
  34. 34.
    Abragam A (2004) Principles of nuclear magnetism. Oxford University Press, New YorkGoogle Scholar
  35. 35.
    Stejskal EO, Tanner JE (1965) Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient. J Chem Phys 42:288–292CrossRefGoogle Scholar
  36. 36.
    Ito M, Hayashi K, Uetani M et al (1993) Bone mineral and other bone components in vertebrae evaluated by QCT and MRI. Skeletal Radiol 22:109–113CrossRefPubMedGoogle Scholar
  37. 37.
    Dietrich O, Biffar A, Reiser M et al (2009) Diffusion-weighted imaging of bone marrow. Semin Musculoskelet Radiol 13:134–144CrossRefPubMedGoogle Scholar
  38. 38.
    Herneth A, Philipp M, Naude J et al (2002) Vertebral metastases: assessment with apparent diffusion coefficient. Radiology 225:889–894CrossRefPubMedGoogle Scholar
  39. 39.
    Tang G, Liu Y, Li W et al (2007) Optimization of b value in diffusion-weighted MRI for the differential diagnosis of benign and malignant vertebral fractures. Skeletal Radiol 36:1035–1041CrossRefPubMedGoogle Scholar
  40. 40.
    Baur A, Stäbler A, Brüning R et al (1998) Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures. Radiology 207:349–356PubMedGoogle Scholar
  41. 41.
    Abanoz R, Hakyemez B, Parlak M (2003) Diffusion-weighted imaging of acute vertebral compression: Differential diagnosis of benign versus malignant pathologic fractures. Tani Girisim Radyol 9:176–183PubMedGoogle Scholar
  42. 42.
    Hackländer T, Scharwächter C, Golz R et al (2006) Value of diffusion-weighted imaging for diagnosing vertebral metastases due to prostate cancer in comparison to other primary tumors. Rofo 178:416–424PubMedGoogle Scholar
  43. 43.
    Byun WM, Jang HW, Kim SW et al (2007) Diffusion-weighted magnetic resonance imaging of sacral insufficiency fractures: comparison with metastases of the sacrum. Spine 32:820–824CrossRefGoogle Scholar
  44. 44.
    Castillo M, Arbelaez A, Smith JK et al (2000) Diffusion-weighted MR imaging offers no advantage over routine noncontrast MR imaging in the detection of vertebral metastases. AJNR Am J Neuroradiol 21:948–953PubMedGoogle Scholar
  45. 45.
    Baur A, Huber A, Dürr HR et al (2002) Differentiation of benign osteoporotic and neoplastic vertebral compression fractures with a diffusion-weighted, steady-state free precession sequence. Rofo 174:70–75PubMedGoogle Scholar
  46. 46.
    Buxton RB (1993) The diffusion sensitivity of fast steady-state free precession imaging. Magn Reson Med 29:235–243CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2010

Authors and Affiliations

  • Andreas Biffar
    • 1
  • Andrea Baur-Melnyk
    • 2
  • Gerwin P. Schmidt
    • 2
  • Maximilian F. Reiser
    • 1
    • 2
  • Olaf Dietrich
    • 1
  1. 1.Josef Lissner Laboratory for Biomedical Imaging, Institute of Clinical RadiologyLMU University Hospitals Munich-GrosshadernMunichGermany
  2. 2.Institute of Clinical RadiologyLMU University Hospitals Munich-GrosshadernMunich 81377Germany

Personalised recommendations