European Radiology

, Volume 20, Issue 6, pp 1515–1523 | Cite as

T2 and T2* mapping in patients after matrix-associated autologous chondrocyte transplantation: initial results on clinical use with 3.0-Tesla MRI

  • Goetz H. Welsch
  • Siegfried TrattnigEmail author
  • Timothy Hughes
  • Sebastian Quirbach
  • Alexander Olk
  • Matthias Blanke
  • Stefan Marlovits
  • Tallal C. Mamisch



To use T2 and T2* mapping in patients after matrix-associated autologous chondrocyte transplantation (MACT) of the knee, and to compare and correlate both methodologies.


3.0-Tesla MRI was performed on 30 patients (34.6 ± 9.9 years) with a follow-up period of 28.1 ± 18.8 months after MACT. Multi-echo, spin-echo-based T2 mapping using six echoes and gradient-echo-based T2* mapping using six echoes were prepared. T2 and T2* maps were obtained using a pixel-wise, mono-exponential, non-negative least-squares fit analysis. Region-of-interest analysis was performed for mean (full-thickness) as well as deep and superficial aspects of the cartilage repair tissue and control cartilage sites.


Mean T2 values (ms) were comparable for the control cartilage (53.4 ± 11.7) and the repair tissue (55.5 ± 11.6) (p > 0.05). Mean T2* values (ms) for control cartilage (30.9 ± 6.6) were significantly higher than those of the repair tissue (24.5 ± 8.1) (p < 0.001). Zonal stratification was more pronounced for T2* than for T2. The correlation between T2 and T2* was highly significant (p < 0.001), with a Pearson coefficient between 0.276 and 0.433.


T2 and T2* relaxation time measurements in the evaluation of cartilage repair tissue and its zonal variation show promising results, although the properties visualised by T2 and T2* may differ.


T2 T2* MRI 3.0 Tesla Cartilage repair 



Timothy Hughes is an employee of Siemens Medical Solutions. Funding for this study was provided by the project “Vienna Advanced Clinical Imaging Center” (VIACLIC), within the “Vienna Spots Of Excellence” program; a collaboration of the Medical University of Vienna and Siemens Austria.


  1. 1.
    Burstein D, Gray ML (2006) Is MRI fulfilling its promise for molecular imaging of cartilage in arthritis? Osteoarthritis Cartilage 14:1087–1090CrossRefPubMedGoogle Scholar
  2. 2.
    Eckstein F, Ateshian G, Burgkart R et al (2006) Proposal for a nomenclature for magnetic resonance imaging based measures of articular cartilage in osteoarthritis. Osteoarthritis Cartilage 14:974–983CrossRefPubMedGoogle Scholar
  3. 3.
    Brittberg M, Peterson L, Sjogren-Jansson E, Tallheden T, Lindahl A (2003) Articular cartilage engineering with autologous chondrocyte transplantation. Bone Joint Surg Am 85-A(Suppl 3):109–115Google Scholar
  4. 4.
    Brittberg M, Winalski CS (2003) Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 85-A Suppl 2:58–69Google Scholar
  5. 5.
    Choi YS, Potter HG, Chun TJ (2008) MR imaging of cartilage repair in the knee and ankle. Radiographics 28:1043–1059CrossRefPubMedGoogle Scholar
  6. 6.
    Trattnig S, Mamisch TC, Pinker K et al (2008) Differentiating normal hyaline cartilage from post-surgical repair tissue using fast gradient echo imaging in delayed gadolinium-enhanced MRI (dGEMRIC) at 3 Tesla. Eur Radiol 18:1251–1259CrossRefPubMedGoogle Scholar
  7. 7.
    Trattnig S, Millington SA, Szomolanyi P, Marlovits S (2007) MR imaging of osteochondral grafts and autologous chondrocyte implantation. Eur Radiol 17:103–118CrossRefPubMedGoogle Scholar
  8. 8.
    Welsch GH, Mamisch TC, Hughes T, Domayer S, Marlovits S, Trattnig S (2008) Advanced morphological and biochemical magnetic resonance imaging of cartilage repair procedures in the knee joint at 3 Tesla. Semin Musculoskelet Radiol 12:196–211CrossRefPubMedGoogle Scholar
  9. 9.
    Welsch GH, Trattnig S, Scheffler K et al (2008) Magnetization transfer contrast and T2 mapping in the evaluation of cartilage repair tissue with 3T MRI. J Magn Reson Imaging 28:979–986CrossRefPubMedGoogle Scholar
  10. 10.
    Burstein D, Bashir A, Gray ML (2000) MRI techniques in early stages of cartilage disease. Invest Radiol 35:622–638CrossRefPubMedGoogle Scholar
  11. 11.
    Burstein D, Velyvis J, Scott KT et al (2001) Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI: (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med 45:36–41CrossRefPubMedGoogle Scholar
  12. 12.
    Glaser C (2005) New techniques for cartilage imaging: T2 relaxation time and diffusion-weighted MR imaging. Radiol Clin North Am 43:641–653 viiCrossRefPubMedGoogle Scholar
  13. 13.
    Goodwin DW, Wadghiri YZ, Dunn JF (1998) Micro-imaging of articular cartilage: T2, proton density, and the magic angle effect. Acad Radiol 5:790–798CrossRefPubMedGoogle Scholar
  14. 14.
    Mosher TJ, Dardzinski BJ (2004) Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 8:355–368CrossRefPubMedGoogle Scholar
  15. 15.
    Ling W, Regatte RR, Navon G, Jerschow A (2008) Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci USA 105:2266–2270CrossRefPubMedGoogle Scholar
  16. 16.
    Miller KL, Hargreaves BA, Gold GE, Pauly JM (2004) Steady-state diffusion-weighted imaging of in vivo knee cartilage. Magn Reson Med 51:394–398CrossRefPubMedGoogle Scholar
  17. 17.
    Regatte RR, Akella SV, Borthakur A, Kneeland JB, Reddy R (2003) In vivo proton MR three-dimensional T1rho mapping of human articular cartilage: initial experience. Radiology 229:269–274CrossRefPubMedGoogle Scholar
  18. 18.
    Hughes T, Welsch GH, Trattnig S, Brandi L, Domayer S, Mamisch TC (2007) T2-star relaxation as a means to differentiate cartilage repair tissue after microfracturing therapy. Intern Soc Magn Reson Med 15:183Google Scholar
  19. 19.
    Murphy BJ (2001) Evaluation of grades 3 and 4 chondromalacia of the knee using T2*-weighted 3D gradient-echo articular cartilage imaging. Skeletal Radiol 30:305–311CrossRefPubMedGoogle Scholar
  20. 20.
    Quaia E, Toffanin R, Guglielmi G et al (2008) Fast T2 mapping of the patellar articular cartilage with gradient and spin-echo magnetic resonance imaging at 1.5 T: validation and initial clinical experience in patients with osteoarthritis. Skeletal Radiol 37:511–517CrossRefPubMedGoogle Scholar
  21. 21.
    Welsch GH, Mamisch TC, Hughes T et al (2008) In vivo biochemical 7.0 Tesla magnetic resonance: preliminary results of dGEMRIC, zonal T2, and T2* mapping of articular cartilage. Invest Radiol 43:619–626CrossRefPubMedGoogle Scholar
  22. 22.
    Wietek B, Martirosian P, Machann J, Mueller-Horvath C, Claussen CD, Schick F (2007) T2 and T2* mapping of the human femoral-tibial cartilage at 1.5 and 3 Tesla. Intern Soc Magn Reson Med 15:516Google Scholar
  23. 23.
    Smith HE, Mosher TJ, Dardzinski BJ et al (2001) Spatial variation in cartilage T2 of the knee. J Magn Reson Imaging 14:50–55CrossRefPubMedGoogle Scholar
  24. 24.
    Watrin-Pinzano A, Ruaud JP, Cheli Y et al (2004) Evaluation of cartilage repair tissue after biomaterial implantation in rat patella by using T2 mapping. MAGMA 17:219–228CrossRefPubMedGoogle Scholar
  25. 25.
    Welsch GH, Mamisch TC, Domayer SE et al (2008) Cartilage T2 assessment at 3-T MR imaging: in vivo differentiation of normal hyaline cartilage from reparative tissue after two cartilage repair procedures—initial experience. Radiology 247:154–161CrossRefPubMedGoogle Scholar
  26. 26.
    White LM, Sussman MS, Hurtig M, Probyn L, Tomlinson G, Kandel R (2006) Cartilage T2 assessment: differentiation of normal hyaline cartilage and reparative tissue after arthroscopic cartilage repair in equine subjects. Radiology 241:407–414CrossRefPubMedGoogle Scholar
  27. 27.
    Liess C, Lusse S, Karger N, Heller M, Gluer CC (2002) Detection of changes in cartilage water content using MRI T2-mapping in vivo. Osteoarthritis Cartilage 10:907–913CrossRefPubMedGoogle Scholar
  28. 28.
    Goodwin DW, Zhu H, Dunn JF (2000) In vitro MR imaging of hyaline cartilage: correlation with scanning electron microscopy. AJR Am J Roentgenol 174:405–409PubMedGoogle Scholar
  29. 29.
    Poole AR, Kojima T, Yasuda T, Mwale F, Kobayashi M, Laverty S (2001) Composition and structure of articular cartilage: a template for tissue repair. Clin Orthop Relat Res 391:26–33CrossRefGoogle Scholar
  30. 30.
    Mosher TJ, Collins CM, Smith HE et al (2004) Effect of gender on in vivo cartilage magnetic resonance imaging T2 mapping. J Magn Reson Imaging 19:323–328CrossRefPubMedGoogle Scholar
  31. 31.
    Rubenstein JD, Kim JK, Morova-Protzner I, Stanchev PL, Henkelman RM (1993) Effects of collagen orientation on MR imaging characteristics of bovine articular cartilage. Radiology 188:219–226PubMedGoogle Scholar
  32. 32.
    Maroudas A, Bayliss MT, Venn MF (1980) Further studies on the composition of human femoral head cartilage. Ann Rheum Dis 39:514–523CrossRefPubMedGoogle Scholar
  33. 33.
    Dunn TC, Lu Y, Jin H, Ries MD, Majumdar S (2004) T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology 232:592–598CrossRefPubMedGoogle Scholar
  34. 34.
    Mosher TJ, Liu Y, Yang QX et al (2004) Age dependency of cartilage magnetic resonance imaging T2 relaxation times in asymptomatic women. Arthritis Rheum 50:2820–2828CrossRefPubMedGoogle Scholar
  35. 35.
    Mosher TJ, Dardzinski BJ, Smith MB (2000) Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2—preliminary findings at 3 T. Radiology 214:259–266PubMedGoogle Scholar
  36. 36.
    Trattnig S, Mamisch TC, Welsch GH et al (2007) Quantitative T2 mapping of matrix-associated autologous chondrocyte transplantation at 3 Tesla: an in vivo cross-sectional study. Invest Radiol 42:442–448CrossRefPubMedGoogle Scholar
  37. 37.
    Bartlett W, Skinner JA, Gooding CR et al (2005) Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J Bone Joint Surg Br 87:640–645CrossRefPubMedGoogle Scholar
  38. 38.
    Bentley G, Biant LC, Carrington RW et al (2003) A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J Bone Joint Surg Br 85:223–230CrossRefPubMedGoogle Scholar
  39. 39.
    Horas U, Pelinkovic D, Herr G, Aigner T, Schnettler R (2003) chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint. A prospective, comparative trial. J Bone Joint Surg Am 85-A:185–192PubMedGoogle Scholar
  40. 40.
    Knutsen G, Drogset JO, Engebretsen L et al (2007) A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am 89:2105–2112Google Scholar
  41. 41.
    Trattnig S, Marlovits S, Gebetsroither S et al (2007) Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) for in vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3.0T: preliminary results. J Magn Reson Imaging 26:974–982CrossRefPubMedGoogle Scholar
  42. 42.
    Mamisch TC, Dudda M, Hughes T, Burstein D, Kim YJ (2008) Comparison of delayed gadolinium enhanced MRI of cartilage (dGEMRIC) using inversion recovery and fast T1 mapping sequences. Magn Reson Med 60:768–773CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2009

Authors and Affiliations

  • Goetz H. Welsch
    • 1
    • 2
  • Siegfried Trattnig
    • 1
    Email author
  • Timothy Hughes
    • 3
  • Sebastian Quirbach
    • 1
  • Alexander Olk
    • 2
  • Matthias Blanke
    • 2
  • Stefan Marlovits
    • 4
  • Tallal C. Mamisch
    • 1
    • 5
  1. 1.MR Center, Department of RadiologyMedical University of ViennaViennaAustria
  2. 2.Department of Trauma and Orthopedic SurgeryUniversity of ErlangenErlangenGermany
  3. 3.Siemens HealthcareErlangenGermany
  4. 4.Center for Joint and Cartilage, Department of Trauma SurgeryMedical University of ViennaViennaAustria
  5. 5.Department of Orthopedic SurgeryUniversity of BerneBerneSwitzerland

Personalised recommendations