European Radiology

, Volume 20, Issue 4, pp 941–948

Three-dimensional textural analysis of brain images reveals distributed grey-matter abnormalities in schizophrenia

  • Balaji Ganeshan
  • Kenneth A. Miles
  • Rupert C. D. Young
  • Christopher R. Chatwin
  • Hugh M. D. Gurling
  • Hugo D. Critchley
Computer Applications

Abstract

Objectives

Three-dimensional (3-D) selective- and relative-scale texture analysis (TA) was applied to structural magnetic resonance (MR) brain images to quantify the presence of grey-matter (GM) and white-matter (WM) textural abnormalities associated with schizophrenia.

Materials and methods

Brain TA comprised volume filtration using the Laplacian of Gaussian filter to highlight fine, medium and coarse textures within GM and WM, followed by texture quantification. Relative TA (e.g. ratio of fine to medium) was also computed. T1-weighted MR whole-brain images from 32 participants with diagnosis of schizophrenia (n = 10) and healthy controls (n = 22) were examined. Five patients possessed marker alleles (SZ8) associated with schizophrenia on chromosome 8 in the pericentriolar material 1 gene while the remaining five had not inherited any of the alleles (SZ0).

Results

Filtered fine GM texture (mean grey-level intensity; MGI) most significantly differentiated schizophrenic patients from controls (P = 0.0058; area under the receiver-operating characteristic curve = 0.809, sensitivity = 90%, specificity = 70%). WM measurements did not distinguish the two groups. Filtered GM and WM textures (MGI) correlated with total GM and WM volume respectively. Medium-to-coarse GM entropy distinguished SZ0 from controls (P = 0.0069) while measures from SZ8 were intermediate between the two.

Conclusions

3-D TA of brain MR enables detection of subtle distributed morphological features associated with schizophrenia, determined partly by susceptibility genes.

Keywords

3-D texture analysis Structural brain Magnetic resonance imaging (MRI) Schizophrenia PCM1 gene 

References

  1. 1.
    Woolley J, McGuire P (2005) Neuroimaging in schizophrenia: what does it tell the clinician? Adv Psychiatr Treat 11:195–202CrossRefGoogle Scholar
  2. 2.
    Weinberger DR, Torrey EF, Neophytides AN, Wyatt RJ (1979) Structural abnormalities in the cerebral cortex of chronic schizophrenic patients. Arch Gen Psychiatr 36:935–939PubMedGoogle Scholar
  3. 3.
    Johnstone EC, Crow TJ, Frith CD et al (1976) Cerebral ventricular size and cognitive impairment in chronic schizophrenia. Lancet 2:924–926CrossRefPubMedGoogle Scholar
  4. 4.
    Harvey I, Ron MA, Du Boulay G et al (1993) Reduction of cortical volume in schizophrenia on magnetic resonance imaging. Psychol Med 23:591–604CrossRefPubMedGoogle Scholar
  5. 5.
    Lim KO, Tew W, Kushner M et al (1996) Cortical grey matter volume deficit in patients with first-episode schizophrenia. Am J Psychiatr 153:1548–1553PubMedGoogle Scholar
  6. 6.
    Wright IC, Rabe-Hesketh S, Woodruff PW et al (2000) Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiatr 157:16–25PubMedGoogle Scholar
  7. 7.
    Nelson MD, Saykin AJ, Flashman LA et al (1998) Hippocampal volume reduction in schizophrenia as assessed by magnetic resonance imaging: a meta-analytic study. Arch Gen Psychiatr 55:433–440CrossRefPubMedGoogle Scholar
  8. 8.
    Gur RE, Maany V, Mozley PD et al (1998) Subcortical MRI volumes in neuroleptic-naive and treated patients with schizophrenia. Am J Psychiatr 155:1711–1717PubMedGoogle Scholar
  9. 9.
    Lawrie SM, McIntosh AM, Hall J et al (2008) Brain structure and function changes during the development of schizophrenia: the evidence from studies of subjects at increased genetic risk. Schizophr Bull 34:330–340CrossRefPubMedGoogle Scholar
  10. 10.
    Lawrie SM, Abukmeil SS (1998) Brain abnormality in schizophrenia. A systematic and quantitative review of volumetric magnetic resonance imaging studies. Br J Psychiatr 160:179–186Google Scholar
  11. 11.
    Liddle PF (1987) Schizophrenic syndromes, cognitive performance and neurological dysfunction. Psychol Med 17:49–57CrossRefPubMedGoogle Scholar
  12. 12.
    Lerski R (2006) Clinical applications of texture analysis. In: Hajek M, Dezortova M, Materka A, Lerski R (eds) Texture analysis for magnetic resonance imaging. Med4publishing, Prague, pp 151–187Google Scholar
  13. 13.
    Kloppel S, Stonnington CM et al (2008) Automatic classification of MR scans in Alzheimer’s disease. Brain 131:681–689CrossRefPubMedGoogle Scholar
  14. 14.
    Freeborough PA, Fox NC (1998) MR image texture analysis applied to the diagnosis and tracking of Alzheimer’s disease. IEEE Trans Med Imag 17:475–479CrossRefGoogle Scholar
  15. 15.
    Liu Y, Teverovskiy L, Carmichael O et al (2004) Discriminative MR image feature analysis for automatic schizophrenia and Alzheimer’s disease classification. Technical report CMU-RI-TR-04-15. The Robotics Institute, Carnegie Mellon University, PittsburghGoogle Scholar
  16. 16.
    Kovalev VA, Petrou M, Suckling J (2003) Detection of structural differences between the brains of schizophrenic patients and controls. Psychiatr Res 124:177–189CrossRefGoogle Scholar
  17. 17.
    Im K, Lee JM et al (2006) Fractal dimension in human cortical surface: multiple regression analysis with cortical thickness, sulcal depth, and folding area. Hum Brain Mapp 27:994–1003CrossRefPubMedGoogle Scholar
  18. 18.
    Gurling H, Critchley H, Datta SR et al (2006) Genetic association and brain morphology studies and the chromosome 8p22 pericentriolar material 1 (PCM1) gene in susceptibility to schizophrenia. Arch Gen Psychiatr 63:844–854CrossRefPubMedGoogle Scholar
  19. 19.
    Deichmann R, Good CD, Josephs O, Ashburner J, Turner R (2000) Optimization of 3-D MP-RAGE sequences for structural brain imaging. NeuroImage 12:112–127CrossRefPubMedGoogle Scholar
  20. 20.
    Ashburner J, Friston KJ (2000) Voxel-based morphometry: the methods. NeuroImage 11:805–821CrossRefPubMedGoogle Scholar
  21. 21.
    Ganeshan B, Miles KA, Young RCD, Chatwin CR (2008) Three dimensional selective-scale texture analysis of CT pulmonary angiograms. Invest Radiol 43:382–394CrossRefPubMedGoogle Scholar
  22. 22.
    Jonsson SA, Luts A, Guldberg-Kjaer N, Ohman R (1999) Pyramidal neuron size in the hippocampus of schizophrenics correlates with total cell count and degree of cell disarray. Eur Arch Psychiatr Clin Neurosci 249:169–173CrossRefGoogle Scholar
  23. 23.
    Casanova MF, Rothberg B (2002) Shape distortion of the hippocampus: a possible explanation of the pyramidal cell disarray reported in schizophrenia. Schizophr Res 55:19–24CrossRefPubMedGoogle Scholar
  24. 24.
    Roberts RC, Roche JK, Conley RR (2005) Synaptic differences in the postmortem striatum of subjects with schizophrenia: a stereological ultrastructural analysis. Synapse 56:185–197CrossRefPubMedGoogle Scholar
  25. 25.
    Tabarés-Seisdedos R, Escámez T et al (2006) Variations in genes regulating neuronal migration predict reduced prefrontal cognition in schizophrenia and bipolar subjects from Mediterranean Spain: a preliminary study. Neuroscience 139:1289–1300CrossRefPubMedGoogle Scholar
  26. 26.
    Haroutunian V, Davis KL (2007) Introduction to the special section: myelin and oligodendrocyte abnormalities in schizophrenia. Int J Neuropsychopharmacol 10:499–502CrossRefPubMedGoogle Scholar
  27. 27.
    Konrad A, Winterer G (2008) Disturbed structural connectivity in schizophrenia sprimary factor in pathology or epiphenomenon? Schizophr Bull 34:72–92CrossRefPubMedGoogle Scholar
  28. 28.
    Zilles K (1990) In: Paxinos G (ed) The human nervous system. Academic, San Diego, pp 757–802Google Scholar
  29. 29.
    Von Economo C (1929) The cytoarchitectonics of the human cerebral cortex. Oxford University Press, LondonGoogle Scholar
  30. 30.
    Moorhead TWJ, Harris JM et al (2006) Automated computation of the gyrification index in prefrontal lobes: methods and comparison with manual implementation. NeuroImage 31:1560–1566CrossRefPubMedGoogle Scholar
  31. 31.
    Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. PNAS 97:11050–11055CrossRefPubMedGoogle Scholar
  32. 32.
    Harris JM, Yates S et al (2004) Gyrification in first-episode schizophrenia: a morphometric study. Biol Psychiatr 55:141–147CrossRefGoogle Scholar
  33. 33.
    Kulynych JJ, Luevano LF et al (1997) Cortical abnormality in schizophrenia: an in vivo application of the gyrification index. Biol Psychiatr 41:995–999CrossRefGoogle Scholar
  34. 34.
    Sallet PC, Elkis H et al (2003) Reduced cortical folding in schizophrenia: an MRI morphometric study. Am J Psychiatr 160:1606–1613CrossRefPubMedGoogle Scholar
  35. 35.
    Vogeley K, Tepest R et al (2001) Right frontal hypergyria differentiation in affected and unaffected siblings from families multiply affected with schizophrenia: a morphometric MRI study. Am J Psychiatr 158:494–496CrossRefPubMedGoogle Scholar
  36. 36.
    Harris JM, Whalley H et al (2004) Abnormal cortical folding in high risk individuals: a predictor of the development of schizophrenia? Biol Psychiatr 56:182–189CrossRefGoogle Scholar
  37. 37.
    Hariri AR, Weinberger DR (2003) Imaging genomics. Br Med Bull 65:259–270CrossRefPubMedGoogle Scholar
  38. 38.
    Kendler KS, Myers JM et al (2000) Clinical features of schizophrenia and linkage to chromosomes 5q, 6p, 8p, and 10p in the Irish study of high density schizophrenia families. Am J Psychiatr 157:402–408CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2009

Authors and Affiliations

  • Balaji Ganeshan
    • 1
    • 2
  • Kenneth A. Miles
    • 1
  • Rupert C. D. Young
    • 2
  • Christopher R. Chatwin
    • 2
  • Hugh M. D. Gurling
    • 3
  • Hugo D. Critchley
    • 1
  1. 1.Clinical Imaging Sciences Centre, Brighton and Sussex Medical SchoolUniversity of Sussex, FalmerBrightonUK
  2. 2.Department of Engineering and DesignUniversity of Sussex, FalmerBrightonUK
  3. 3.Department of Mental Health SciencesUniversity College LondonLondonUK

Personalised recommendations