Advertisement

European Radiology

, Volume 20, Issue 3, pp 696–703 | Cite as

Real-time fMRI feedback training may improve chronic tinnitus

  • Sven HallerEmail author
  • Niels Birbaumer
  • Ralf Veit
Neuro

Abstract

Objectives

Tinnitus consists of a more or less constant aversive tone or noise and is associated with excess auditory activation. Transient distortion of this activation (repetitive transcranial magnetic stimulation, rTMS) may improve tinnitus. Recently proposed operant training in real-time functional magnetic resonance imaging (rtfMRI) neurofeedback allows voluntary modification of specific circumscribed neuronal activations. Combining these observations, we investigated whether patients suffering from tinnitus can (1) learn to voluntarily reduce activation of the auditory system by rtfMRI neurofeedback and whether (2) successful learning improves tinnitus symptoms.

Methods

Six participants with chronic tinnitus were included. First, location of the individual auditory cortex was determined in a standard fMRI auditory block-design localizer. Then, participants were trained to voluntarily reduce the auditory activation (rtfMRI) with visual biofeedback of the current auditory activation.

Results

Auditory activation significantly decreased after rtfMRI neurofeedback. This reduced the subjective tinnitus in two of six participants.

Conclusion

These preliminary results suggest that tinnitus patients learn to voluntarily reduce spatially specific auditory activations by rtfMRI neurofeedback and that this may reduce tinnitus symptoms. Optimized training protocols (frequency, duration, etc.) may further improve the results.

Keywords

fMRI BOLD Biofeedback Tinnitus Neurofeedback 

Abbreviations

BOLD

blood oxygenation level dependent

DLPFC

dorso-lateral prefrontal cortex

EEG

electroencephalography

EPI

echoplanar imaging

fMRI

functional magnetic resonance imaging

rtfMRI

real-time functional magnetic resonance imaging

rTMS

repetitive transcranial magnetic stimulation

VLPFC

ventro-lateral prefrontal cortex

Notes

Acknowledgements

We thank all subjects for participation in the study.

Conflict of interest

No conflicts of interest.

References

  1. 1.
    Heller AJ (2003) Classification and epidemiology of tinnitus. Otolaryngol Clin North Am 2:239–248CrossRefGoogle Scholar
  2. 2.
    Dobie RA (2003) Depression and tinnitus. Otolaryngol Clin North Am 2:383–388CrossRefGoogle Scholar
  3. 3.
    Dobie RA (1999) A review of randomized clinical trials in tinnitus. Laryngoscope 8:1202–1211CrossRefGoogle Scholar
  4. 4.
    Muhlnickel W, Elbert T, Taub E et al (1998) Reorganization of auditory cortex in tinnitus. Proc Natl Acad Sci U S A 17:10340–10343CrossRefGoogle Scholar
  5. 5.
    Andersson G, Lyttkens L, Hirvela C et al (2000) Regional cerebral blood flow during tinnitus: a PET case study with lidocaine and auditory stimulation. Acta Otolaryngol 8:967–972CrossRefGoogle Scholar
  6. 6.
    Kleinjung T, Eichhammer P, Langguth B et al (2005) Long-term effects of repetitive transcranial magnetic stimulation (rTMS) in patients with chronic tinnitus. Otolaryngol Head Neck Surg 4:566–569CrossRefGoogle Scholar
  7. 7.
    Rossi S, De Capua A, Ulivelli M et al (2007) Effects of repetitive transcranial magnetic stimulation on chronic tinnitus. A randomised, cross over, double blind, placebo-controlled study. J Neurol, Neurosurg PsychiatryGoogle Scholar
  8. 8.
    Plewnia C, Reimold M, Najib A et al (2007) Dose-dependent attenuation of auditory phantom perception (tinnitus) by PET-guided repetitive transcranial magnetic stimulation. Hum Brain Mapp 3:238–246CrossRefGoogle Scholar
  9. 9.
    Miller NE (1975) Clinical applications of biofeedback: Voluntary control of heart rate, rhythm, and blood pressure. In: Russel HI (ed) New horizons in cardiovascular practice. University Park Press, Baltimore, pp 239–249Google Scholar
  10. 10.
    Kubler A, Kotchoubey B, Hinterberger T et al (1999) The thought translation device: a neurophysiological approach to communication in total motor paralysis. Exp Brain Res 2:223–232Google Scholar
  11. 11.
    Birbaumer N, Ghanayim N, Hinterberger T et al (1999) A spelling device for the paralysed. Nature 6725:297–298CrossRefGoogle Scholar
  12. 12.
    Weiskopf N, Veit R, Erb M et al (2003) Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data. Neuroimage 3:577–586CrossRefGoogle Scholar
  13. 13.
    Weiskopf N, Scharnowski F, Veit R et al (2004) Self-regulation of local brain activity using real-time functional magnetic resonance imaging (fMRI). J Physiol Paris 4–6:357–373CrossRefGoogle Scholar
  14. 14.
    Weiskopf N, Sitaram R, Josephs O et al (2007) Real-time functional magnetic resonance imaging: methods and applications. Magn Reson Imaging 6:989–1003CrossRefGoogle Scholar
  15. 15.
    deCharms RC, Maeda F, Glover GH et al (2005) Control over brain activation and pain learned by using real-time functional MRI. Proc Natl Acad Sci U S A 51:18626–18631CrossRefGoogle Scholar
  16. 16.
    deCharms RC (2007) Reading and controlling human brain activation using real-time functional magnetic resonance imaging. Trends Cogn Sci 11:473–481CrossRefPubMedGoogle Scholar
  17. 17.
    Zenner HP, De Maddalena H (2005) Validity and reliability study of three tinnitus self-assessment scales: loudness, annoyance and change. Acta oto-laryngologica 11:1184–1188CrossRefGoogle Scholar
  18. 18.
    Goebel G, Hiller W (1994) [The tinnitus questionnaire. A standard instrument for grading the degree of tinnitus. Results of a multicenter study with the tinnitus questionnaire]. HNO 3:166–172Google Scholar
  19. 19.
    Seifritz E, Esposito F, Hennel F et al (2002) Spatiotemporal pattern of neural processing in the human auditory cortex. Science 5587:1706–1708CrossRefGoogle Scholar
  20. 20.
    Caria A, Veit R, Sitaram R et al (2007) Regulation of anterior insular cortex activity using real-time fMRI. Neuroimage 3:1238–1246CrossRefGoogle Scholar
  21. 21.
    Biswal B, Yetkin FZ, Haughton VM et al (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 4:537–541CrossRefGoogle Scholar
  22. 22.
    Damoiseaux JS, Rombouts SA, Barkhof F et al (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 37:13848–13853CrossRefGoogle Scholar
  23. 23.
    Raichle ME, MacLeod AM, Snyder AZ et al (2001) A default mode of brain function. Proc Natl Acad Sci U S A 2:676–682CrossRefGoogle Scholar
  24. 24.
    Ochsner KN, Ray RD, Cooper JC et al (2004) For better or for worse: neural systems supporting the cognitive down- and up-regulation of negative emotion. Neuroimage 2:483–499CrossRefGoogle Scholar
  25. 25.
    Eippert F, Veit R, Weiskopf N et al (2007) Regulation of emotional responses elicited by threat-related stimuli. Hum Brain Mapp 5:409–423CrossRefGoogle Scholar
  26. 26.
    Critchley HD, Wiens S, Rotshtein P et al (2004) Neural systems supporting interoceptive awareness. Nat Neurosci 2:189–195CrossRefGoogle Scholar
  27. 27.
    Critchley HD, Melmed RN, Featherstone E et al (2002) Volitional control of autonomic arousal: a functional magnetic resonance study. Neuroimage 4:909–919CrossRefGoogle Scholar
  28. 28.
    Sitaram R, Caria A, Veit R et al (2007) FMRI brain-computer interface: a tool for neuroscientific research and treatment. Comput Intell Neurosci 25487Google Scholar
  29. 29.
    Gosepath K, Nafe B, Ziegler E et al (2001) [Neurofeedback in therapy of tinnitus]. HNO 1:29–35CrossRefGoogle Scholar
  30. 30.
    Dohrmann K, Weisz N, Schlee W et al (2007) Neurofeedback for treating tinnitus. Prog Brain Res 473–485Google Scholar
  31. 31.
    Nelson LA (2007) The role of biofeedback in stroke rehabilitation: past and future directions. Top Stroke Rehabil 4:59–66CrossRefGoogle Scholar
  32. 32.
    Bilecen D, Scheffler K, Schmid N et al (1998) Tonotopic organization of the human auditory cortex as detected by BOLD-FMRI. Hear Res 1–2:19–27CrossRefGoogle Scholar
  33. 33.
    Cohen ER, Ugurbil K, Kim SG (2002) Effect of basal conditions on the magnitude and dynamics of the blood oxygenation level-dependent fMRI response. J Cereb Blood Flow Metab 9:1042–1053CrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2009

Authors and Affiliations

  1. 1.Institute of Radiology, Department of NeuroradiologyUniversity Hospital BaselBaselSwitzerland
  2. 2.Institute of NeuroradiologyDepartment of Imaging and Medical Informatics, Geneva University HospitalGenevaSwitzerland
  3. 3.Institute of Medical Psychology and Behavioral NeurobiologyUniversity of TübingenTübingenGermany
  4. 4.Ospedale San CamilloInstituto di Ricovero e Cura a Carattere ScientificoVeneziaItaly

Personalised recommendations