European Radiology

, Volume 20, Issue 2, pp 395–403 | Cite as

Image-guided spinal injection procedures in open high-field MRI with vertical field orientation: feasibility and technical features

  • F. StreitparthEmail author
  • T. Walter
  • U. Wonneberger
  • S. Chopra
  • F. Wichlas
  • M. Wagner
  • K. G. Hermann
  • B. Hamm
  • U. Teichgräber



We prospectively evaluated the feasibility and technical features of MR-guided lumbosacral injection procedures in open high-field MRI at 1.0 T.


In a CuSO4·5H2O phantom and five human cadaveric spines, fluoroscopy sequences (proton-density-weighted turbo spin-echo (PDw TSE), T1w TSE, T2w TSE; balanced steady-state free precession (bSSFP), T1w gradient echo (GE), T2w GE) were evaluated using two MRI-compatible 20-G Chiba-type needles. Artefacts were analysed by varying needle orientation to B0, frequency-encoding direction and slice orientation. Image quality was described using the contrast-to-noise ratio (CNR). Subsequently, a total of 183 MR-guided nerve root (107), facet (53) and sacroiliac joint (23) injections were performed in 53 patients.


In vitro, PDw TSE sequence yielded the best needle–tissue contrasts (CNR = 45, 18, 15, 9, and 8 for needle vs. fat, muscle, root, bone and sclerosis, respectively) and optimal artefact sizes (width and tip shift less than 5 mm). In vivo, PDw TSE sequence was sufficient in all cases. The acquisition time of 2 s facilitated near-real-time MRI guidance. Drug delivery was technically successful in 100% (107/107), 87% (46/53) and 87% (20/23) of nerve root, facet and sacroiliac joint injections, respectively. No major complications occurred. The mean procedure time was 29 min (range 19–67 min).


MR-guided spinal injections in open high-field MRI are feasible and accurate using fast TSE sequence designs.


Interventional MRI Open high field Spinal injection therapy Artefacts Low back pain 

Supplementary material

PRT Movie (MOV 317 KB)


  1. 1.
    Vahlensieck M, Bruderhofer AF, Waldecker B (2005) CT-guided steroid injection into disc herniation: a causative therapy for lower back pain due to disc herniation. Rofo 177:72–76PubMedGoogle Scholar
  2. 2.
    Derby R, Kine G, Saal JA et al (1992) Response to steroid and duration of radicular pain as predictors of surgical outcome. Spine 17:S176–183CrossRefPubMedGoogle Scholar
  3. 3.
    Meleka S, Patra A, Minkoff E et al (2005) Value of CT fluoroscopy for lumbar facet blocks. AJNR Am J Neuroradiol 26:1001–1003PubMedGoogle Scholar
  4. 4.
    Bogduk N (1997) International Spinal Injection Society guidelines for the performance of spinal injection procedures. Part 1: zygapophysial joint blocks. Clin J Pain 13:285–302CrossRefPubMedGoogle Scholar
  5. 5.
    Pfirrmann CW, Oberholzer PA, Zanetti M et al (2001) Selective nerve root blocks for the treatment of sciatica: evaluation of injection site and effectiveness-a study with patients and cadavers. Radiology 221:704–711CrossRefPubMedGoogle Scholar
  6. 6.
    Adam G, Bucker A, Nolte-Ernsting C et al (1999) Interventional MR imaging: percutaneous abdominal and skeletal biopsies and drainages of the abdomen. Eur Radiol 9:1471–1478CrossRefPubMedGoogle Scholar
  7. 7.
    Sequeiros RB, Klemola R, Ojala R et al (2003) Percutaneous MR-guided discography in a low-field system using optical instrument tracking: a feasibility study. J Magn Reson Imaging 17:214–219CrossRefPubMedGoogle Scholar
  8. 8.
    Ishiwata Y, Takada H, Gondo G et al (2007) Magnetic resonance-guided percutaneous laser disk decompression for lumbar disk herniation—relationship between clinical results and location of needle tip. Surg Neurol 68:159–163CrossRefPubMedGoogle Scholar
  9. 9.
    Hilfiker PR, Weishaupt D, Schmid M et al (1999) Real-time MR-guided joint puncture and arthrography: preliminary results. Eur Radiol 9:201–204CrossRefPubMedGoogle Scholar
  10. 10.
    Konig CW, Schott UG, Pereira PL et al (2002) MR-guided lumbar sympathicolysis. Eur Radiol 12:1388–1393CrossRefPubMedGoogle Scholar
  11. 11.
    Schulz T, Puccini S, Schneider JP et al (2004) Interventional and intraoperative MR: review and update of techniques and clinical experience. Eur Radiol 14:2212–2227CrossRefPubMedGoogle Scholar
  12. 12.
    Kariniemi J, Sequeiros RB, Ojala R et al (2009) MRI-guided percutaneous nephrostomy: a feasibility study. Eur Radiol 19:1296–1301CrossRefPubMedGoogle Scholar
  13. 13.
    Fritz J, Clasen S, Boss A et al (2008) Real-time MR fluoroscopy-navigated lumbar facet joint injections: feasibility and technical properties. Eur Radiol 18:1513–1518CrossRefPubMedGoogle Scholar
  14. 14.
    Ojala R, Klemola R, Karppinen J et al (2001) Sacro-iliac joint arthrography in low back pain: feasibility of MRI guidance. Eur J Radiol 40:236–239CrossRefPubMedGoogle Scholar
  15. 15.
    Ojala R, Vahala E, Karppinen J et al (2000) Nerve root infiltration of the first sacral root with MRI guidance. J Magn Reson Imaging 12:556–561CrossRefPubMedGoogle Scholar
  16. 16.
    Sequeiros RB, Ojala RO, Klemola R et al (2002) MRI-guided periradicular nerve root infiltration therapy in low-field (0.23-T) MRI system using optical instrument tracking. Eur Radiol 12:1331–1337CrossRefPubMedGoogle Scholar
  17. 17.
    Fritz J, Henes JC, Thomas C et al (2008) Diagnostic and interventional MRI of the sacroiliac joints using a 1.5-T open-bore magnet: a one-stop-shopping approach. AJR Am J Roentgenol 191:1717–1724CrossRefPubMedGoogle Scholar
  18. 18.
    Fritz J, Thomas C, Clasen S et al (2009) Freehand real-time MRI-guided lumbar spinal injection procedures at 1.5 T: feasibility, accuracy, and safety. AJR Am J Roentgenol 192:W161–W167CrossRefPubMedGoogle Scholar
  19. 19.
    Streitparth F, Gebauer B, Melcher I et al (2009) MR-guided laser ablation of osteoid osteoma in an open high-field system (1.0 T). Cardiovasc Intervent Radiol 32:320–325CrossRefPubMedGoogle Scholar
  20. 20.
    Frahm C, Gehl HB, Melchert UH et al (1996) Visualization of magnetic resonance-compatible needles at 1.5 and 0.2 Tesla. Cardiovasc Intervent Radiol 19:335–340CrossRefPubMedGoogle Scholar
  21. 21.
    D’Aprile P, Tarantino A, Jinkins JR et al (2007) The value of fat saturation sequences and contrast medium administration in MRI of degenerative disease of the posterior/perispinal elements of the lumbosacral spine. Eur Radiol 17:523–531CrossRefPubMedGoogle Scholar
  22. 22.
    Lewin JS, Duerk JL, Jain VR et al (1996) Needle localization in MR-guided biopsy and aspiration: effects of field strength, sequence design, and magnetic field orientation. AJR Am J Roentgenol 166:1337–1345PubMedGoogle Scholar
  23. 23.
    Muller-Bierl B, Graf H, Steidle G et al (2005) Compensation of magnetic field distortions from paramagnetic instruments by added diamagnetic material: measurements and numerical simulations. Med Phys 32:76–84CrossRefPubMedGoogle Scholar
  24. 24.
    Farahani K, Sinha U, Sinha S et al (1990) Effect of field strength on susceptibility artifacts in magnetic resonance imaging. Comput Med Imaging Graph 14:409–413CrossRefPubMedGoogle Scholar
  25. 25.
    Ludeke KM, Roschmann P, Tischler R (1985) Susceptibility artefacts in NMR imaging. Magn Reson Imaging 3:329–343CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2009

Authors and Affiliations

  • F. Streitparth
    • 1
    Email author
  • T. Walter
    • 1
  • U. Wonneberger
    • 1
  • S. Chopra
    • 2
  • F. Wichlas
    • 3
  • M. Wagner
    • 1
  • K. G. Hermann
    • 1
  • B. Hamm
    • 1
  • U. Teichgräber
    • 1
  1. 1.Department of RadiologyCharité, Humboldt-Universität zu BerlinBerlinGermany
  2. 2.Department of General, Visceral, and Transplantation SurgeryCharité-Universitätsmedizin Berlin, Campus Virchow KlinikumBerlinGermany
  3. 3.Center for Musculoskeletal SurgeryCharité-Universitätsmedizin Berlin, Campus Virchow KlinikumBerlinGermany

Personalised recommendations