Advertisement

European Radiology

, Volume 20, Issue 2, pp 432–442 | Cite as

Simulation-based comparison of two approaches frequently used for dynamic contrast-enhanced MRI

  • Stefan Zwick
  • Gunnar Brix
  • Paul S. Tofts
  • Ralph Strecker
  • Annette Kopp-Schneider
  • Hendrik Laue
  • Wolfhard Semmler
  • Fabian Kiessling
Magnetic Resonance

Abstract

Purpose

The purpose was to compare two approaches for the acquisition and analysis of dynamic-contrast-enhanced MRI data with respect to differences in the modelling of the arterial input-function (AIF), the dependency of the model parameters on physiological parameters and their numerical stability. Eight hundred tissue concentration curves were simulated for different combinations of perfusion, permeability, interstitial volume and plasma volume based on two measured AIFs and analysed according to the two commonly used approaches. The transfer constants (Approach 1) K trans and (Approach 2) k ep were correlated with all tissue parameters. K trans showed a stronger dependency on perfusion, and k ep on permeability. The volume parameters (Approach 1) v e and (Approach 2) A were mainly influenced by the interstitial and plasma volume. Both approaches allow only rough characterisation of tissue microcirculation and microvasculature. Approach 2 seems to be somewhat more robust than 1, mainly due to the different methods of CA administration.

Keywords

Magnetic resonance imaging DCE-MRI Pharmacokinetic modelling MMID4 AIF 

Notes

Acknowledgement

We thank the Bundesministerium für Bildung und Forschung (BMBF) for the financial support (contract grant name: NanoAG; contract grant number: 13N8873). The authors thank Gary M. Raymond from the Department of Bioengineering, University of Washington, Seattle, Washington for his valuable help in using MMID4.

Conflict of interest

Dr. Ralph Strecker is an employee of Siemens AG, Healthcare Sector, Erlangen, Germany

References

  1. 1.
    Schlemmer HP, Merkle J, Grobholz R et al (2004) Contrast-enhanced dynamic MR imaging for the assessment of microvessel density in prostate cancer. Eur Radiol 14:309–317CrossRefPubMedGoogle Scholar
  2. 2.
    Hawighorst H, Weikel W, Knapstein PG et al (1998) Angiogenic activity of cervical carcinoma: assessment by functional magnetic resonance imaging-based parameters and a histomorphological approach in correlation with disease outcome. Clin Cancer Res 4:2305–2312PubMedGoogle Scholar
  3. 3.
    Hawighorst H, Knapstein PG, Knopp MV (1998) Uterine cervical carcinoma: comparison of standard and pharmacokinetic analysis of time intensity curves for assessment of tumor angiogenesis and patient survival. Cancer Res 58:3598–3602PubMedGoogle Scholar
  4. 4.
    Padhani AR (2003) MRI for assessing antivascular cancer treatments. Br J Radiol 76:60–80CrossRefGoogle Scholar
  5. 5.
    Pham CD, Roberts TP, van Bruggen N et al (1998) Magnetic resonance imaging detects suppression of tumor vascular permeability after administration of antibody to vascular endothelial growth factor. Cancer Invest 16:225–230CrossRefPubMedGoogle Scholar
  6. 6.
    Thomas AL, Morgan B, Drevs J et al (2003) Vascular endothelial growth factor receptor tyrosine kinase inhibitors: PTK787/ZK 222584. Semin Oncol 30:32–38PubMedGoogle Scholar
  7. 7.
    Brix G, Semmler W, Port R et al (1991) Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 15:621–628CrossRefPubMedGoogle Scholar
  8. 8.
    Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17:357–367CrossRefPubMedGoogle Scholar
  9. 9.
    Kety SS (1951) The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol Rev 3:1–41PubMedGoogle Scholar
  10. 10.
    Larsson HBW, Stubgaard M, Frederiksen JL et al (1990) Quantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors. Magn Reson Med 16:117–131CrossRefPubMedGoogle Scholar
  11. 11.
    St. Lawrence KS, Lee TY (1998) An adiabatic approximation to the tissue homogeneity model for water exchange in the brain. I. Theoretical derivation. J Cereb Blood Flow Metab 18:1365–1377CrossRefPubMedGoogle Scholar
  12. 12.
    Tofts PS, Brix G, Buckley DL et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T1-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232CrossRefPubMedGoogle Scholar
  13. 13.
    Srikanchana R, Thomasson D, Choyke P et al (2004) A Comparison of Pharmacokinetic Models of Dynamic Contrast Enhanced MRI. Proc. of the 17th IEEE Symposium on Computer-Based Medical SystemsGoogle Scholar
  14. 14.
    Buckley DL (2002) Uncertainty in the analysis of tracer kinetics using dynamic contrast-enhanced T1-weighted MRI. Magn Reson Med 47:601–606CrossRefPubMedGoogle Scholar
  15. 15.
    Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 7:91–101CrossRefPubMedGoogle Scholar
  16. 16.
    Brix G, Kiessling F, Lucht R et al (2004) Microcirculation and microvasculature in breast tumors: quantitative characterization by pharmacokinetic analysis of dynamic MR image series. Magn Reson Med 52:420–429CrossRefPubMedGoogle Scholar
  17. 17.
    Zhou R, Pickup S, Yankeelov TE et al (2004) Simultaneous Measurement of Arterial Input Function and Tumor Pharmacokinetics in Mice by Dynamic Contrast Enhanced Imaging: Effects of Transcytolemmal Water Exchange. Magn Reson Med 52:248–257CrossRefPubMedGoogle Scholar
  18. 18.
    Knowles BR, Batchelor PG, Parish V et al (2008) Pharmacokinetic Modeling of Delayed Gadolinium Enhancement in the Myocardium. Magn Reson Med 60:1524–1530CrossRefPubMedGoogle Scholar
  19. 19.
    Cheng H (2008) Investigation and Optimization of Parameter Accuracy in Dynamic Contrast-Enhanced MRI. J Magn Reson Imaging 28:736–743CrossRefPubMedGoogle Scholar
  20. 20.
    Ah-See M, Markis A, Taylor NJ et al (2008) Early Changes in FunctionalDynamicMagnetic Resonance Imaging Predict for Pathologic Response to Neoadjuvant Chemotherapy in Primary Breast Cancer. Clin Cancer Res 14:6580–6589CrossRefPubMedGoogle Scholar
  21. 21.
    Bradley DP, Tessier JJ, Lacey T et al (2009) Examining the acute effects of cediranib (RECENTIN, AZD2171) treatment in tumor models: a dynamic contrast-enhanced MRI study using gadopentate. Magn Reson Imaging 27:377–384CrossRefPubMedGoogle Scholar
  22. 22.
    Chou CP, Wu MT, Chang HAT et al (2007) Monitoring breast cancer response to neoadjuvant systemic chemotherapy using parametric contrast-enhanced MRI: a pilot study. Acad Radiol 14:561–573CrossRefPubMedGoogle Scholar
  23. 23.
    Haris M, Husain N, Singh A et al (2008) Dynamic contrast-enhanced (DCE) derived transfer coefficient (ktrans) is a surrogate marker of matrix metalloproteinase 9 (MMP-9) expression in brain tuberculomas. J Magn Reson Imaging 28:588–597CrossRefPubMedGoogle Scholar
  24. 24.
    Haris M, Gupta RK, Singh A et al (2008) Differentiation of infective from neoplastic brain lesions by dynamic contrast-enhanced MRI. Neuroradiology 50:531–540CrossRefPubMedGoogle Scholar
  25. 25.
    Li KL, Henry RG, Wilmes LJ et al (2007) Kinetic assessment of breast tumors using high spatial resolution signal enhancement ratio (SER) imaging. Magn Reson Med 58:572–581CrossRefPubMedGoogle Scholar
  26. 26.
    Sathy BN, Chou YH, Li HJ et al (2009) Dynamic contrast-enhanced and T2-weighted magnetic resonance imaging study of the correlation between tumour angiogenesis and growth kinetics. Lab Anim 43:53–59CrossRefPubMedGoogle Scholar
  27. 27.
    Singh A, Haris M, Rathore D et al (2007) Quantification of physiological and hemodynamic indices using T(1) dynamic contrast-enhanced MRI in intracranial mass lesions. J Magn Reson Imaging 26:871–880CrossRefPubMedGoogle Scholar
  28. 28.
    Tigani B, Cannet C, Karmouty-Quintana H et al (2007) Lung inflammation and vascular remodeling after repeated allergen challenge detected noninvasively by MRI. Am J Physiol Lung Cell Mol Physiol 292:644–653CrossRefGoogle Scholar
  29. 29.
    Uh J, Lewis-Amezcua K, Varghese R et al (2009) On the measurement of absolute cerebral blood volume (CBV) using vascular-space-occupancy (VASO) MRI. Magn Reson Med 61:659–667CrossRefPubMedGoogle Scholar
  30. 30.
    Aaron RK, Dyke JP, Ciombor DM et al (2007) Perfusion abnormalities in subchondral bone associated with marrow edema, osteoarthritis, and avascular necrosis. Ann N Y Acad Sci 1117:124–137CrossRefPubMedGoogle Scholar
  31. 31.
    Chun H, Clymer B, Sammet S et al (2008) Improvement in the reproducibility of region of interest using an auditory feedback loop: a pilot assessment using dynamic contrast-enhanced (DCE) breast MR images. J Magn Reson Imaging 27:27–33CrossRefPubMedGoogle Scholar
  32. 32.
    Giesel FL, Choyke PL, Mehndiratta A et al (2008) Pharmacokinetic analysis of malignant pleural mesothelioma-initial results of tumor microcirculation and its correlation to microvessel density (CD-34). Acad Radiol 15:563–570CrossRefPubMedGoogle Scholar
  33. 33.
    Hillengass J, Zechmann CM, Nadler A et al (2008) Gain of 1q21 and distinct adverse cytogenetic abnormalities correlate with increased microcirculation in multiple myeloma. Int J Cancer 122:2871–2875CrossRefPubMedGoogle Scholar
  34. 34.
    Juan CJ, Chen CY, Jen YM et al (2009) Perfusion characteristics of late radiation injury of parotid glands: quantitative evaluation with dynamic contrast-enhanced MRI. Eur Radiol 19:94–102CrossRefPubMedGoogle Scholar
  35. 35.
    Kerber M, Reiss Y, Wickersheim A et al (2008) Flt-1 signaling in macrophages promotes glioma growth in vivo. Cancer Res 68:7342–7351CrossRefPubMedGoogle Scholar
  36. 36.
    Manuchehri AM, Sathyapalan T, Lowry M et al (2007) Effect of dopamine agonists on prolactinomas and normal pituitary assessed by dynamic contrast enhanced magnetic resonance imaging (DCE-MRI). Pituitary 10:261–266CrossRefPubMedGoogle Scholar
  37. 37.
    Oberholzer K, Pohlmann A, Schreiber W et al (2008) Assessment of tumor microcirculation with dynamic contrast-enhanced MRI in patients with esophageal cancer: initial experience. J Magn Reson Imaging 27:1296–1301CrossRefPubMedGoogle Scholar
  38. 38.
    Reiss Y, Knedla A, Tal AO et al (2008) Switching of vascular phenotypes within a murine breast cancer model induced by angiopoietin-2. J Pathol 217:571–580CrossRefGoogle Scholar
  39. 39.
    Sathyapalan T, Lowry M, Turnbull LW et al (2007) Mechanism of action of octreotide in acromegalic tumours in vivo using dynamic contrast-enhanced magnetic resonance imaging. Pituitary 10:233–236CrossRefPubMedGoogle Scholar
  40. 40.
    Hoffmann U, Brix G, Knopp MV et al (1994) Pharmacokinetic mapping of the breast: a new method for dynamic MR mammography. Magn Reson Med 33:506–514CrossRefGoogle Scholar
  41. 41.
    Bassingthwaighte JB, Goresky CA (1984) Modeling in the analysis of solute and water exchange in the microvasculature. In: Renkin EM, Michel CC, Geiger SR (eds) Handbook of physiology. Section 2. The cardiovascular system. American Physiological Society, Maryland, Bethesda, pp 549–626Google Scholar
  42. 42.
    Schneider M (1971) Einführung in die Physiologie des Menschen. Verlag Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  43. 43.
    Schmidt T (1995) Physiologie des Menschen. Verlag Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  44. 44.
    Flindt R (1995) Fortpflanzung und Keimesentwicklung der Organismen. Gustav Fischer Verlag, StuttgartGoogle Scholar
  45. 45.
    Pintaske J, Martirosian P, Graf H et al (2006) Relaxivity of Gadopentetate Dimeglumine (Magnevist), Gadobutrol (Gadovist), and Gadobenate Dimeglumine (MultiHance) in human blood plasma at 0.2, 1.5, and 3 Tesla. Invest Radiol 41:213–221CrossRefPubMedGoogle Scholar
  46. 46.
    Heilmann M, Vautier J, Robert R (2009) In vitro setup to study permeability characteristics of contrast agents by MRI. Contrast Media Mol Imaging Contrast Media Mol Imaging 4:66–72Google Scholar
  47. 47.
    Parker GJ, Roberts C, Macdonald A (2006) Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magn Reson Med 56:993–1000CrossRefPubMedGoogle Scholar
  48. 48.
    Brix G, Zwick S, Kiessling F et al (2009) Pharmacokinetic analysis of tissue microcirculation using nested models: Multimodel inference and parameter identifiability. Med Phys 36:2932–2933CrossRefGoogle Scholar
  49. 49.
    Yang C, Karczmar GS, Medved M et al (2004) Estimating the arterial input function using two reference tissues in dynamic contrast-enhanced MRI studies: fundamental concepts and simulations. Magn Reson Med 52:1110–1117CrossRefPubMedGoogle Scholar
  50. 50.
    Yankeelov TE, Luci JJ, Lepage M et al (2005) Quantitative pharmacokinetic analysis of DCE-MRI data without an arterial input function: a reference region model. Magn Reson Imaging 23:519–529CrossRefPubMedGoogle Scholar
  51. 51.
    Yankeelov TE, Luci JJ, DeBusk LM et al (2008) Incorporating the effects of transcytolemmal water exchange in a reference region model for DCE-MRI analysis: theory, simulations, and experimental results. Magn Reson Med 59:326–335CrossRefPubMedGoogle Scholar
  52. 52.
    Yang C, Karczmar GS, Medved M et al (2009) Reproducibility assessment of a multiple reference tissue method for quantitative dynamic contrast enhanced-MRI analysis. Magn Reson Med 61:851–859CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2009

Authors and Affiliations

  • Stefan Zwick
    • 1
    • 2
    • 3
  • Gunnar Brix
    • 4
  • Paul S. Tofts
    • 5
  • Ralph Strecker
    • 1
  • Annette Kopp-Schneider
    • 6
  • Hendrik Laue
    • 7
  • Wolfhard Semmler
    • 2
  • Fabian Kiessling
    • 8
  1. 1.Siemens AG, Healthcare SectorErlangenGermany
  2. 2.Department of Medical Physics in RadiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
  3. 3.Department of Diagnostic Radiology, Medical PhysicsUniversity Hospital FreiburgFreiburgGermany
  4. 4.Department of Medical and Occupational Radiation ProtectionFederal Office for Radiation ProtectionMunichGermany
  5. 5.Imaging PhysicsBrighton and Sussex Medical SchoolFalmer, SussexUK
  6. 6.BiostatisticsGerman Cancer Research Center (DKFZ)HeidelbergGermany
  7. 7.Fraunhofer MEVISBremenGermany
  8. 8.Experimental Molecular Imaging, Medical FacultyRWTH-Aachen UniversityAachenGermany

Personalised recommendations