European Radiology

, Volume 20, Issue 2, pp 303–308

The role of mean diffusivity (MD) as a predictive index of the response to chemotherapy in locally advanced breast cancer: a preliminary study

  • Chiara Iacconi
  • Marco Giannelli
  • Carolina Marini
  • Anna Cilotti
  • Monica Moretti
  • Paolo Viacava
  • Eugenia Picano
  • Andrea Michelotti
  • Davide Caramella
Breast

Abstract

Objective

To evaluate the role of mean diffusivity (MD) as a predictive index of the response to chemotherapy in locally advanced breast cancer.

Methods

Twenty-one women referred to our institution with a diagnosis of locally advanced breast cancer underwent magnetic resonance imaging (MRI) studies at 1.5 T before beginning and after completing combined neoadjuvant chemotherapy. The examination protocol included an EPI sequence sensitised to diffusion (b-value 1,000 s/mm2) and three-dimensional (3D) coronal T1 sequences before and after intravenous contrast medium. Tumours were delineated by using dynamic MR acquisition before and after chemotherapy. The percentage of tumour volume reduction (PVR) and pre-(MDpre) and post-therapy (MDpost) MD values were computed for each lesion.

Results

PVR ≥ 65% was observed in 17/21 patients (responders). MDpre of responders (0.99 ± 0.27 10−3 mm2/s) was significantly (p = 0.025) lower than MDpre of non-responders (1.46 ± 0.33 10−3 mm2/s). Moreover, in patients as a whole PVR significantly correlated (p = 0.01, r = −0.54) with MDpre. MDpost (1.26 ± 0.39 10−3 mm2/s) of responders was significantly(p = 0.024) higher than MDpre (0.99 ± 0.27 mm2 10−3 mm2/s), whereas non-responders MDpost (1.00 ± 0.14 10−3 mm2/s)did not increase compared with MDpre (1.46 ± 0.33 10−3 mm2/s).

Conclusions

This preliminary study seems to indicate that low values of pre-chemotherapy MD may identify, before starting treatment, the patients with higher probability of response in terms of percentage of volume reduction of the lesion. MD may represent a complementary parameter useful to correctly select patients for neoadjuvant chemotherapy.

Keywords

Breast Diffusion weighted imaging MRI Neoadjuvant chemotherapy Locally advanced breast cancer 

References

  1. 1.
    Green FL, Page DL, Fleming ID et al (2002) Part VII breast. In: AJCC cancer staging handbook, 6th edn. Springer, Berlin, pp 255–281Google Scholar
  2. 2.
    Londero V, Bazzocchi M, Del Frate C, Puglisi F, Di Loreto C, Francescutti G, Zuiani C (2004) Locally advanced breast cancer: comparison of mammography, sonography and MR imaging in evaluation of residual disease in women receiving neoadjuvant chemotherapy. Eur Radiol 14:1371–1379CrossRefPubMedGoogle Scholar
  3. 3.
    Basser PJ, Mattiello J, Le Bihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin-echo. J Magn Reson B 103:247–254CrossRefPubMedGoogle Scholar
  4. 4.
    Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13:534–546CrossRefPubMedGoogle Scholar
  5. 5.
    Neil J, Miller J, Mukherjee P, Huppi S (2002) Diffusion tensor imaging of normal and injured developing human brain: a technical review. NMR Biomed 15:543–552CrossRefPubMedGoogle Scholar
  6. 6.
    Woodhams R, Matsunaga K, Iwabuchi K, Kan S, Hata H, Kuranami M, Watanabe M, Hayakawa K (2005) Diffusion-weighted imaging of malignant breast tumors: the usefulness of apparent diffusion coefficient (ADC) value and ADC map for the detection of malignant breast tumors and evaluation of cancer extension. J Comput Assist Tomogr 29:644–649CrossRefPubMedGoogle Scholar
  7. 7.
    Sinha S, Lucas-Quesada FA, Sinha U, DeBruhl N, Bassett LW (2002) In vivo diffusion-weighted MRI of the breast: potential for lesion characterization. J Magn Reson Imaging 15:693–704CrossRefPubMedGoogle Scholar
  8. 8.
    Marini C, Iacconi C, Giannelli M, Cilotti A, Moretti M, Bartolozzi C (2007) Quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesion. Eur Radiol 17:2646–2655CrossRefPubMedGoogle Scholar
  9. 9.
    Guo Y, Cai YQ, Cai ZL, Gao YG, An NY, Ma L, Mahankali S, Gao JH (2002) Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J Magn Reson Imaging 16:172–178CrossRefPubMedGoogle Scholar
  10. 10.
    Hatakenaka M, Soeda H, Yabuuchi H, Matsuo Y, Kamitani T, Oda Y, Tsuneyoshi M, Honda H (2008) Apparent diffusion coefficients of breast tumors: clinical application. Magn Reson Med Sci 7:23–29CrossRefPubMedGoogle Scholar
  11. 11.
    Hamstra DA, Chenevert TL, Moffat BA, Johnson TD, Meyer CR, Mukherji SK, Quint DJ, Gebarski SS, Fan X, Tsien CI, Lawrence TS, Junck L, Rehemtulla A, Ross BD (2005) Evaluation of the functional diffusion map as an early biomarker of time-to-progression and overall survival in high-grade glioma. Proc Natl Acad Sci USA 102:16759–16764CrossRefPubMedGoogle Scholar
  12. 12.
    Hayashida Y, Yakushiji T, Awai K, Katahira K, Nakayama Y, Shimomura O, Kitajima M, Hirai T, Yamashita Y, Mizuta H (2006) Monitoring therapeutic responses of primary bone tumors by diffusion-weighted image: initial results. Eur Radiol 16:2637–2643CrossRefPubMedGoogle Scholar
  13. 13.
    Pickles MD, Gibbs P, Lowry M, Turnbull LW (2006) Diffusion changes precede size reduction in neoadjuvant treatment of breast cancer. Magn Reson Imaging 24:843–847CrossRefPubMedGoogle Scholar
  14. 14.
    Chenevert TL, Meyer CR, Moffat BA, Rehemtulla A, Mukherji SK, Gebarski SS, Quint DJ, Robertson PL, Lawrence TS, Junck L, Taylor JM, Johnson TD, Dong Q, Muraszko KM, Brunberg JA, Ross BD (2002) Diffusion MRI: a new strategy for assessment of cancer therapeutic efficacy. Mol Imaging 1:336–343CrossRefPubMedGoogle Scholar
  15. 15.
    Theilmann RJ, Borders R, Trouard TP, Xia G, Outwater E, Ranger-Moore J, Gillies RJ, Stopeck A (2004) Changes in water mobility measured by diffusion MRI predict response of metastatic breast cancer to chemotherapy. Neoplasia 6:831–837CrossRefPubMedGoogle Scholar
  16. 16.
    Manton DJ, Chaturvedi A, Hubbard A, Lind MJ, Lowry M, Maravejas A, Pickles MD, Tozer DJ, Turnbull LW (2006) Neoadjuvant chemotherapy in breast cancer: early response prediction with quantitative MR imaging and spectroscopy. Br J Cancer 94:427–435CrossRefPubMedGoogle Scholar
  17. 17.
    Sharma U, Danishad K, Seenu V, Jagannathan N (2009) Longitudinal study of the assessment by MRI and diffusion-weighted imaging of tumor response in patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy. NMR Biomed 22:104–113CrossRefPubMedGoogle Scholar
  18. 18.
    Belli P, Costantini M, Malaspina C, Magistrelli A, LaTorre G, Bonomo L (2006) MRI accuracy in residual disease evaluation in breast cancer patients treated with neoadjuvant chemotherapy. Clinical Radiology 61:946–953CrossRefPubMedGoogle Scholar
  19. 19.
    Pickles MD, Lowry M, Manton DJ, Gibbs P, Turnbull LW (2005) Role of dynamic contrast enhanced MRI in monitoring early response of locally advanced breast cancer to neoadjuvant chemotherapy. Breast Cancer Res Treat 91:1–10CrossRefPubMedGoogle Scholar
  20. 20.
    Partridge SC, Gibbs JE, Lu Y, Esserman LJ, Tripathy D, Wolverton DS, Rugo HS, Hwang ES, Ewing CA, Hylton NM (2005) MRI measurements of breast tumor volume predict response to neoadjuvant chemotherapy and recurrence-free survival. AJR Am J Roentgenol 184:1774–1781PubMedGoogle Scholar
  21. 21.
    Dudeck O, Zeile M, Pink D, Pech M, Tunn PU, Reichardt P, Ludwig WD, Hamm B (2008) Diffusion-weighted magnetic resonance imaging allows monitoring of anticancer treatment effects in patients with soft-tissue sarcomas. J Magn Reson Imaging 27:1109–1113CrossRefPubMedGoogle Scholar
  22. 22.
    Rajan R, Poniecka A, Smith TL, Yang Y, Frye D, Pusztai L, Fiterman DJ, Gal-Gombos E, Whitman G, Rouzier R, Green M, Kuerer H, Buzdar AU, Hortobagyi GN, Symmans WF (2004) Change in tumor cellularity of breast carcinoma after neoadjuvant chemotherapy as a variable in the pathologic assessment of response. Cancer 100:1365–1373CrossRefPubMedGoogle Scholar
  23. 23.
    Ogston KN, Miller ID, Payne S et al (2003) A new histological grading system to assess response of breast cancers to primary chemotherapy: prognostic significance and survival. Breast 12:320–327CrossRefPubMedGoogle Scholar
  24. 24.
    Ross BD, Moffat BA et al (2003) Evaluation of Cancer Therapy Using Diffusion Magnetic Resonance Imaging. Mol Cancer Ther 2:581–587PubMedGoogle Scholar
  25. 25.
    Roth Y, Tichler T, Kostenich G, Ruiz-Cabello J, Maier SE, Cohen JS, Orestein A, Mardor Y (2004) High-b-value diffusion-weighted MR imaging for pretreatment prediction and early monitoring of tumor response to therapy in mice. Radiology 232:685–692CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2009

Authors and Affiliations

  • Chiara Iacconi
    • 1
  • Marco Giannelli
    • 2
  • Carolina Marini
    • 1
  • Anna Cilotti
    • 1
  • Monica Moretti
    • 1
  • Paolo Viacava
    • 3
  • Eugenia Picano
    • 1
  • Andrea Michelotti
    • 4
  • Davide Caramella
    • 1
  1. 1.Department of RadiologyAzienda Ospedaliero-Universitaria PisanaPisaItaly
  2. 2.Unit of Medical PhysicsAzienda Ospedaliero-Universitaria PisanaPisaItaly
  3. 3.Department of PathologyAzienda USL 12 di ViareggioLido di CamaioreItaly
  4. 4.Department of OncologyAzienda Ospedaliero-Universitaria PisanaPisaItaly

Personalised recommendations