European Radiology

, Volume 19, Issue 10, pp 2357–2362 | Cite as

Cardiac spiral dual-source CT with high pitch: a feasibility study

  • Dirk Ertel
  • Michael M. Lell
  • Frank Harig
  • Thomas Flohr
  • Bernhard Schmidt
  • Willi A. Kalender


Increase of pitch in spiral CT decreases data acquisition time; dual-source CT (DSCT) systems provide improved temporal resolution. We evaluated the combination of these two features. Measurements were performed using a commercial DSCT system equipped with prototype software allowing pitch factors from p = 0.35 to 3.0. We measured slice sensitivity profiles as a function of pitch to assess spatial resolution in the z-direction and the contrast of structures moved periodically to measure temporal resolution. Additionally we derived modulation transfer functions to provide objective parameters; both spatial and temporal resolution were essentially unchanged even at high pitch. CT of the cardiac region of three pigs was performed at p = 3.0. In vivo CT images confirmed good image quality; direct comparison with standard low-pitch phase-correlated CT image datasets showed no significant difference. For a normalized z-axis acquisition of 12 cm, the corresponding effective dose value was 2.0 mSv for the high-pitch CT protocol. We conclude that spiral DSCT imaging with a pitch of 3.0 can provide unimpaired image quality with respect to spatial and temporal resolution. Applications to cardiac and thoracic imaging with effective dose below 1 mSv are possible.


Dual-source CT Cardiac imaging Image quality Dose High pitch 


  1. 1.
    Kachelrieß M, Kalender WA (1998) Electrocardiogram-correlated image reconstruction from subsecond spiral computed tomography scans of the heart. Med Phys 25:2417–2431PubMedCrossRefGoogle Scholar
  2. 2.
    Achenbach S (2005) Current and future status on cardiac computed tomography imaging for diagnosis and risk stratification. J Nucl Cardiol 12:703–713PubMedCrossRefGoogle Scholar
  3. 3.
    Mahnken AH, Muhlenbruch G, Gunther RW, Wildberger JE (2007) Cardiac CT: coronary arteries and beyond. Eur Radiol 17:994–1008PubMedCrossRefGoogle Scholar
  4. 4.
    Kalender WA (2005) Computed tomography. Fundamentals, system technology, image quality, applications, 2nd edn. Publicis, ErlangenGoogle Scholar
  5. 5.
    Flohr TG, McCollough CH, Bruder H, Petersilka M, Gruber K, Suss C, Grasruck M, Stierstorfer K, Krauss B, Raupach R, Primak AN, Kuttner A, Achenbach S, Becker C, Kopp A, Ohnesorge BM (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268PubMedCrossRefGoogle Scholar
  6. 6.
    Johnson TRC, Nikolaou K, Wintersperger BJ, Leber AW, von Ziegler F, Rist C, Buhmann S, Knez A, Reiser MF, Becker CR (2006) Dual-source CT cardiac imaging: initial experience. Eur Radiol 16:1409–1415PubMedCrossRefGoogle Scholar
  7. 7.
    Ertel D, Kröber E, Kyriakou Y, Langner O, Kalender WA (2008) MTF-based assessment of temporal resolution: validation for single source CT and dual source CT. Radiology 248:1013–1017PubMedCrossRefGoogle Scholar
  8. 8.
    Kalender WA, Wolf H, Suess C, Gies M, Greess H, Bautz WA (1999) Dose reduction in CT by on-line tube current control: principles and validation on phantoms and cadavers. Eur Radiol 9:323–328PubMedCrossRefGoogle Scholar
  9. 9.
    Jakobs TF, Becker CR, Ohnesorge B, Flohr T, Suess C, Schoepf UJ et al (2002) Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur Radiol 12:1081–1086PubMedCrossRefGoogle Scholar
  10. 10.
    Achenbach S, Anders K, Kalender WA (2008) Dual-source cardiac computed tomography: image quality and dose considerations. Eur Radiol 18:1188–1198PubMedCrossRefGoogle Scholar
  11. 11.
    Hausleiter J, Meyer T, Hadamitzky M, Huber E, Zankl M, Martinoff S, Kastrati A, Schomig A (2006) Radiation dose estimates from cardiac multislice computed tomography in daily practice—impact of different scanning protocols on effective dose estimates. Circulation 113:1305–1310PubMedCrossRefGoogle Scholar
  12. 12.
    McCollough CH, Primak AN, Saba O, Bruder H, Stierstorfer K, Raupach R, Suess C, Schmidt B, Ohnesorge BM, Flohr TG (2007) Dose performance of a 64-channel dual-source CT scanner. Radiology 243:775–784PubMedCrossRefGoogle Scholar
  13. 13.
    Stolzmann P, Scheffel H, Schertler T, Frauenfelder T, Leschka S, Husmann L, Flohr TG, Marincek B, Kaufmann PA, Alkadhi H (2008) Radiation dose estimates in dual-source computed tomography coronary angiography. Eur Radiol 18:592–599PubMedCrossRefGoogle Scholar
  14. 14.
    Weustink AC, Mollet NR, Pugliese F, Meijboom WB, Nieman K, Heijenbrok-Kal MH, Flohr TG, Neefjes LAE, Cademartiri F, de Feyter PJ, Krestin GP (2008) Optimal electrocardiographic pulsing windows and heart rate: effect on image quality and radiation exposure at dual-source coronary CT angiography. Radiology 248:792–798PubMedCrossRefGoogle Scholar
  15. 15.
    Deak P, Langner O, Lell M, Kalender WA (2009) Effects of adaptive slice collimation on patient dose in multi-slice spiral computed tomography. Radiology 252(2). doi: 10.1148/radiol.2522081845
  16. 16.
    Stolzmann P, Leschka S, Scheffel H, Krauss T, Desbiolles L, Plass A, Genoni M, Flohr TG, Wildermuth S, Marincek B, Alkadhi H (2008) Dual-source CT in step-and-shoot mode: Noninvasive coronary angiography with low radiation dose. Radiology 249:71–80PubMedCrossRefGoogle Scholar
  17. 17.
    Shuman WP, Branch KR, May JM, Mitsumori LM, Lockhart DW, Dubinsky TJ, Warren BH, Caldwell JH (2008) Prospective versus retrospective ECG gating for 64-detector CT of the coronary arteries: comparison of image quality and patient radiation dose. Radiology 248:431–437PubMedCrossRefGoogle Scholar
  18. 18.
    Scheffel H, Alkadhi H, Leschka S, Plass A, Desbiolles L, Guber I, Krauss T, Gruenenfelder J, Genoni M, Luescher TF, Marincek B, Stolzmann P (2008) Low-dose CT coronary angiography in the step-and-shoot mode: diagnostic performance. Heart 94:1132–1137PubMedCrossRefGoogle Scholar
  19. 19.
    Menzel H, Schibilla H, Teunen D (eds) (2000) European guidelines on quality criteria for computed tomography. Publication no EUR 16262 EN. European Commission, LuxembourgGoogle Scholar
  20. 20.
    Kuettner A, Kopp AF, Schroeder S, Rieger T, Brunn J, Meisner C, Heuschmid M, Trabold T, Burgstahler C, Martensen J, Schoebel W, Selbmann H-K, Claussen CD (2004) Diagnostic accuracy of multidetector computed tomography coronary angiography in patients with angiographically proven coronary artery disease. J Am Coll Cardiol 43:831–839PubMedCrossRefGoogle Scholar
  21. 21.
    Coles DR, Smail MA, Negus IS, Wilde P, Oberhoff M, Karsch KR, Baumbach A (2006) Comparison of radiation doses from multislice computed tomography coronary angiography and conventional diagnostic angiography. J Am Coll Cardiol 47:1840–1845PubMedCrossRefGoogle Scholar
  22. 22.
    Carrington C (2008) SOMATOM definition flash dual source CT: leaving dose behind. In: SOMATOM Sessions 23: 6–13, Accessed 16 Feb 2009
  23. 23.
    Kalender WA, Deak P, Kellermeier M, van Straten M, Vollmar SV (2009) Application- and patient size-dependent optimization of x-ray spectra for CT. Med Phys 36:993–1007PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2009

Authors and Affiliations

  • Dirk Ertel
    • 1
  • Michael M. Lell
    • 2
  • Frank Harig
    • 3
  • Thomas Flohr
    • 4
  • Bernhard Schmidt
    • 4
  • Willi A. Kalender
    • 1
  1. 1.Institute of Medical Physics (IMP)University of Erlangen-NürnbergErlangenGermany
  2. 2.Department of RadiologyUniversity of Erlangen-NürnbergErlangenGermany
  3. 3.Center of Cardiac SurgeryUniversity of Erlangen-NürnbergErlangenGermany
  4. 4.Siemens HealthcareForchheimGermany

Personalised recommendations