European Radiology

, Volume 19, Issue 10, pp 2383–2390 | Cite as

High resolution MR imaging of the fetal heart with cardiac triggering: a feasibility study in the sheep fetus

  • Jin YamamuraEmail author
  • Bernhard Schnackenburg
  • Hendrik Kooijmann
  • Michael Frisch
  • Kurt Hecher
  • Gerhard Adam
  • Ulrike Wedegärtner


The aim of this study was to perform fetal cardiac magnetic resonance imaging (MRI) with triggering of the fetal heart beat in utero in a sheep model. All experimental protocols were reviewed and the usage of ewes and fetuses was approved by the local animal protection authorities. Images of the hearts of six pregnant ewes were obtained by using a 1.5-T MR system (Philips Medical Systems, Best, Netherlands). The fetuses were chronically instrumented with a carotid catheter to measure the fetal heart frequency for the cardiac triggering. Pulse wave triggered, breath-hold cine-MRI with steady-state free precession (SSFP) was achieved in short axis, two-, four- and three-chamber views. The left ventricular volume and thus the function were measured from the short axis. The fetal heart frequencies ranged between 130 and 160 bpm. The mitral, tricuspid, aortic, and pulmonary valves could be clearly observed. The foramen ovale could be visualized. Myocardial contraction was shown in cine sequences. The average blood volume at the end systole was 3.4 ± 0.2 ml (± SD). The average volume at end diastole was 5.2 ± 0.2 ml; thus the stroke volumes of the left ventricle in the systole were between 1.7 and 1.9 ml with ejection fractions of 38.6% and 39%,   respectively. The pulse wave triggered cardiac MRI of the fetal heart allowed evaluation of anatomical structures and functional information. This feasibility study demonstrates the applicability of MRI for future evaluation of fetuses with complex congenital heart defects, once a noninvasive method has been developed to perform fetal cardiac triggering.


Magnetic resonance imaging Ventricles Pregnancy Fetal Diagnosis 


  1. 1.
    Blondin D, Schaper J, Klee D, Reihs T, Hammer R, Modder U, Messing-Junger M (2008) Evaluation of malformations of the fetal central nervous system using fetal MRI. Rofo 180:715–721PubMedGoogle Scholar
  2. 2.
    Busing KA, Kilian AK, Schaible T, Endler C, Schaffelder R, Neff KW (2008) MR relative fetal lung volume in congenital diaphragmatic hernia: survival and need for extracorporeal membrane oxygenation. Radiology 248:240–246PubMedCrossRefGoogle Scholar
  3. 3.
    Perkins L, Hughes E, Srinivasan L, Allsop J, Glover A, Kumar S, Fisk N, Rutherford M (2008) Exploring cortical subplate evolution using magnetic resonance imaging of the fetal brain. Dev Neurosci. 30:211–220PubMedCrossRefGoogle Scholar
  4. 4.
    Liu F, Garland M, Duan Y, Stark RI, Xu D, Dong Z, Bansal R, Peterson BS, Kangarlu A (2008) Study of the development of fetal baboon brain using magnetic resonance imaging at 3 Tesla. Neuroimage 40:148–159PubMedCrossRefGoogle Scholar
  5. 5.
    Righini A, Avagliano L, Doneda C, Pinelli L, Parazzini C, Rustico M, Triulzi F, Bulfamante G (2008) Prenatal magnetic resonance imaging of optic nerve head coloboma. Prenat Diagn 28(3):242–246PubMedCrossRefGoogle Scholar
  6. 6.
    Kappeler C, Dhenain M, Phan Dinh Tuy F, Saillour Y, Marty S, Fallet-Bianco C, Souville I, Souil E, Pinard JM, Meyer G, Encha-Razavi F, Volk A, Beldjord C, Chelly J, Francis F (2007) Magnetic resonance imaging and histological studies of corpus callosal and hippocampal abnormalities linked to doublecortin deficiency. J Comp Neurol 500:239–254PubMedCrossRefGoogle Scholar
  7. 7.
    Ramenghi LA, Fumagalli M, Righini A, Bassi L, Groppo M, Parazzini C, Bianchini E, Triulzi F, Mosca F (2007) Magnetic resonance imaging assessment of brain maturation in preterm neonates with punctate white matter lesions. Neuroradiology 49:161–167PubMedCrossRefGoogle Scholar
  8. 8.
    Wedegartner U, Tchirikov M, Schafer S, Priest AN, Walther M, Adam G, Schroder HJ (2005) Fetal sheep brains: findings at functional blood oxygen level-dependent 3-T MR imaging—relationship to maternal oxygen saturation during hypoxia. Radiology 237:919–926PubMedCrossRefGoogle Scholar
  9. 9.
    Wedegartner U, Tchirikov M, Schafer S, Priest AN, Kooijman H, Adam G, Schroder HJ (2006) Functional MR imaging: comparison of BOLD signal intensity changes in fetal organs with fetal and maternal oxyhemoglobin saturation during hypoxia in sheep. Radiology 238:872–880PubMedCrossRefGoogle Scholar
  10. 10.
    Wedegartner U, Tchirikov M, Koch M, Adam G, Schroder H (2002) Functional magnetic resonance imaging (fMRI) for fetal oxygenation during maternal hypoxia: initial results. Rofo 174:700–703PubMedGoogle Scholar
  11. 11.
    Gharib AM, Herzka DA, Ustun AO, Desai MY, Locklin J, Pettigrew RI, Stuber M (2007) Coronary MR angiography at 3 T during diastole and systole. J Magn Reson Imaging 26:921–926PubMedCrossRefGoogle Scholar
  12. 12.
    Gharib AM, Ho VB, Rosing DR, Herzka DA, Stuber M, Arai AE, Pettigrew RI (2008) Coronary artery anomalies and variants: technical feasibility of assessment with coronary MR angiography at 3 T. Radiology 247:220–227PubMedGoogle Scholar
  13. 13.
    Finn JP, Nael K, Deshpande V, Ratib O, Laub G (2006) Cardiac MR imaging: state of the technology. Radiology 241:338–354PubMedCrossRefGoogle Scholar
  14. 14.
    Cury RC, Shash K, Nagurney JT, Rosito G, Shapiro MD, Nomura CH, Abbara S, Bamberg F, Ferencik M, Schmidt EJ, Brown DF, Hoffmann U, Brady TJ (2008) Cardiac magnetic resonance with T2-weighted imaging improves detection of patients with acute coronary syndrome in the emergency department. Circulation 118(8):837–844PubMedCrossRefGoogle Scholar
  15. 15.
    Ebeling Barbier C, Bjerner T, Hansen T, Andersson J, Lind L, Hulthe J, Johansson L, Ahlstrom H (2007) Clinically unrecognized myocardial infarction detected at MR imaging may not be associated with atherosclerosis. Radiology 245:103–110PubMedCrossRefGoogle Scholar
  16. 16.
    Manganaro L, Savelli S, Di Maurizio M, Perrone A, Francioso A, La Barbera L, Totaro P, Fierro F, Tomei A, Coratella F, Giancotti A, Ballesio L,Ventriglia F (2008) Assessment of congenital heart disease (CHD): is there a role for fetal magnetic resonance imaging (MRI)? Eur J Radiol. doi: 10.1016/j.ejrad.2008.06.016
  17. 17.
    Coakley FV, Glenn OA, Qayyum A, Barkovich AJ, Goldstein R, Filly RA (2004) Fetal MRI: a developing technique for the developing patient. AJR Am J Roentgenol 182:243–252PubMedGoogle Scholar
  18. 18.
    Coakley FV, Hricak H, Filly RA, Barkovich AJ, Harrison MR (1999) Complex fetal disorders: effect of MR imaging on management—preliminary clinical experience. Radiology 213:691–696PubMedGoogle Scholar
  19. 19.
    Huisman TA, Wisser J, Martin E, Kubik-Huch R, Marincek B (2002) Fetal magnetic resonance imaging of the central nervous system: a pictorial essay. Eur Radiol 12:1952–1961PubMedGoogle Scholar
  20. 20.
    Guo WY, Wong TT (2003) Screening of fetal CNS anomalies by MR imaging. Childs Nerv Syst 19:410–414PubMedCrossRefGoogle Scholar
  21. 21.
    Guo Y, Luo BN (2006) The state of the art of fetal magnetic resonance imaging. Chin Med J (Engl) 119:1294–1299Google Scholar
  22. 22.
    Stoll C, Benoit F, Peter MO, Gasser B (1999) Familial association of camptodactyly, mental retardation, whistling face and Pierre Robin sequence. Clin Dysmorphol 8:247–251PubMedCrossRefGoogle Scholar
  23. 23.
    Allen LM, Silverman RK (2000) Prenatal ultrasound evaluation of fetal diastematomyelia: two cases of type I split cord malformation. Ultrasound Obstet Gynecol 15:78–82PubMedCrossRefGoogle Scholar
  24. 24.
    Deng J, Brookes JA, Gardener JE, Rodeck CH, Lees WR (1996) Three-dimensional magnetic resonance imaging of the postmortem fetal heart. Fetal Diagn Ther 11:417–421PubMedCrossRefGoogle Scholar
  25. 25.
    Deng J, Rodeck CH (2004) New fetal cardiac imaging techniques. Prenat Diagn 24:1092–1103PubMedCrossRefGoogle Scholar
  26. 26.
    Meyer-Wittkopf M, Cook A, McLennan A, Summers P, Sharland GK, Maxwell DJ (1996) Evaluation of three-dimensional ultrasonography and magnetic resonance imaging in assessment of congenital heart anomalies in fetal cardiac specimens. Ultrasound Obstet Gynecol 8:303–308PubMedCrossRefGoogle Scholar
  27. 27.
    Wang XF, Deng YB, Nanda NC, Deng J, Miller AP, Xie MX (2003) Live three-dimensional echocardiography: imaging principles and clinical application. Echocardiography 20:593–604PubMedCrossRefGoogle Scholar
  28. 28.
    Chang CH, Yu CH, Chang FM, Ko HC, Chen HY (2003) Volumetric assessment of normal fetal lungs using three-dimensional ultrasound. Ultrasound Med Biol 29:935–942PubMedCrossRefGoogle Scholar
  29. 29.
    Chang CH, Yu CH, Chang FM, Ko HC, Chen HY (2003) Three-dimensional ultrasound in the assessment of normal fetal thigh volume. Ultrasound Med Biol 29:361–366PubMedCrossRefGoogle Scholar
  30. 30.
    Meyer-Wittkopf M (2002) Interventional fetal cardiac therapy—possible perspectives and current shortcomings. Ultrasound Obstet Gynecol 20:527–531PubMedCrossRefGoogle Scholar
  31. 31.
    Deng J, Rodeck CH (2006) Current applications of fetal cardiac imaging technology. Curr Opin Obstet Gynecol 18:177–184PubMedCrossRefGoogle Scholar
  32. 32.
    Manganaro L, Savelli S, Di Maurizio M, Perrone A, Tesei J, Francioso A, Angeletti M, Coratella F, Irimia D, Fierro F, Ventriglia F, Ballesio L (2008) Potential role of fetal cardiac evaluation with magnetic resonance imaging: preliminary experience. Prenat Diagn 28:148–156PubMedCrossRefGoogle Scholar
  33. 33.
    Fogel MA, Wilson RD, Flake A, Johnson M, Cohen D, McNeal G, Tian ZY, Rychik J (2005) Preliminary investigations into a new method of functional assessment of the fetal heart using a novel application of ‘real-time’ cardiac magnetic resonance imaging. Fetal Diagn Ther 20:475–480PubMedCrossRefGoogle Scholar
  34. 34.
    Smith FW, MacLennan F, Abramovich DR, MacGilivray I, Hutchison JM (1984) NMR imaging in human pregnancy: a preliminary study. Magn Reson Imaging 2:57–64PubMedCrossRefGoogle Scholar
  35. 35.
    Smith FW, Adam AH, Phillips WD (1983) NMR imaging in pregnancy. Lancet 1:61–62PubMedCrossRefGoogle Scholar
  36. 36.
    Hiba B, Richard N, Thibault H, Janier M (2007) Cardiac and respiratory self-gated cine MRI in the mouse: comparison between radial and rectilinear techniques at 7 T. Magn Reson Med 58:745–753PubMedCrossRefGoogle Scholar
  37. 37.
    Crowe ME, Larson AC, Zhang Q, Carr J, White RD, Li D, Simonetti OP (2004) Automated rectilinear self-gated cardiac cine imaging. Magn Reson Med 52:782–788PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2009

Authors and Affiliations

  • Jin Yamamura
    • 1
    Email author
  • Bernhard Schnackenburg
    • 2
  • Hendrik Kooijmann
    • 2
  • Michael Frisch
    • 1
  • Kurt Hecher
    • 3
  • Gerhard Adam
    • 1
  • Ulrike Wedegärtner
    • 1
  1. 1.Department of Diagnostic and Interventional RadiologyUniversity Hospital Hamburg–EppendorfHamburgGermany
  2. 2.Philips Medical SystemsHamburgGermany
  3. 3.Department of Obstetrics and Fetal MedicineUniversity Hospital Hamburg–EppendorfHamburgGermany

Personalised recommendations