European Radiology

, Volume 19, Issue 10, pp 2363–2372 | Cite as

Prospective ECG-triggered axial CT at 140-kV tube voltage improves coronary in-stent restenosis visibility at a lower radiation dose compared with conventional retrospective ECG-gated helical CT

  • Jun Horiguchi
  • Chikako Fujioka
  • Masao Kiguchi
  • Hideya Yamamoto
  • Toshiro Kitagawa
  • Shingo Kohno
  • Katsuhide Ito
Cardiac

Abstract

The purpose of this study was to compare coronary 64-slice CT angiography (CTA) protocols, specifically prospective electrocardiograph (ECG)-triggered and retrospective ECG-gated CT acquisition performed using a tube voltage of 140 kV and 120 kV, regarding intracoronary stent imaging. Coronary artery stents (n = 12) with artificial in-stent restenosis (50% luminal reduction, 40 HU) on a cardiac phantom were examined by CT at heart rates of 50–75 beats per minute (bpm). The subjective visibility of in-stent restenosis was evaluated with a three-point scale (1 clearly visible, 2 visible, and 3 not visible), and artificial lumen narrowing [(inner stent diameter − measured lumen diameter)/inner stent diameter], lumen attenuation increase ratio [(in-stent attenuation − coronary lumen attenuation)/coronary lumen attenuation], and signal-to-noise ratio of in-stent lumen were determined. The effective dose was estimated. The artificial lumen narrowing (mean 43%), the increase of lumen attenuation (mean 46%), and signal-to-noise ratio (mean 7.8) were not different between CT acquisitions (p = 0.12–0.91). However, the visibility scores of in-stent restenosis were different (p < 0.05) between ECG-gated CTA techniques: (a) 140-kV prospective (effective dose 4.6 mSv), 1.6; (b) 120-kV prospective (3.3 mSv), 1.8; (c) 140-kV retrospective (16.4–18.8 mSv), 1.9; and (d) 120-kV retrospective (11.0–13.4 mSv), 1.9. Thus, 140-kV prospective ECG-triggered CTA improves coronary in-stent restenosis visibility at a lower radiation dose compared with retrospective ECG-gated CTA.

Keywords

Coronary CTA Stent Phantom 

References

  1. 1.
    Scanlon PJ, Faxon DP, Audet AM et al (1999) ACC/AHA guidelines for coronary angiography: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Coronary Angiography) developed in collaboration with the Society for Cardiac Angiography and Interventions. J Am Coll Cardiol 33:1756–1824PubMedCrossRefGoogle Scholar
  2. 2.
    Hamon M, Champ-Rigot L, Morello R, Riddell JW, Hamon M (2008) Diagnostic accuracy of in-stent coronary restenosis detection with multislice spiral computed tomography: a meta-analysis. Eur Radiol 18:217–225PubMedCrossRefGoogle Scholar
  3. 3.
    Schuijf JD, Pundziute G, Jukema JW et al (2007) Evaluation of patients with previous coronary stent implantation with 64-section CT. Radiology 245:410–423CrossRefGoogle Scholar
  4. 4.
    Das KM, El-Menyar AA, Salam AM et al (2007) Contrast-enhanced 64-section coronary multidetector CT angiography versus conventional coronary angiography for stent assessment. Radiology 245:424–432PubMedCrossRefGoogle Scholar
  5. 5.
    Carrabba N, Bamoshmoosh M, Carusi LM et al (2007) Usefulness of 64-slice multidetector computed tomography for detecting drug eluting in-stent restenosis. Am J Cardiol 100:1754–1758PubMedCrossRefGoogle Scholar
  6. 6.
    Hecht HS, Zaric M, Zaric V, Lubarsky L, Prakash M, Roubin G (2008) Usefulness of 64-detector computed tomographic angiography for diagnosing in-stent restenosis in native coronary arteries. Am J Cardiol 101:820–824PubMedCrossRefGoogle Scholar
  7. 7.
    Manghat N, Lingen RV, Hewson P et al (2008) Usefulness of 64-detector row computed tomography for evaluation of intracoronary stents in symptomatic patients with suspected in-stent restenosis. Am J Cardiol 101:1567–1573PubMedCrossRefGoogle Scholar
  8. 8.
    Suzuki J, Furui S, Kuwahara S et al (2007) Assessment of coronary stent in vitro on multislice computed tomography angiography: improved in-stent visibility by the use of 140-kV tube voltage. J Comput Assist Tomogr 31:414–421PubMedCrossRefGoogle Scholar
  9. 9.
    Horiguchi J, Kiguchi M, Fujioka C et al (2008) Radiation dose, image quality, stenosis measurement, and CT densitometry using ECG-triggered coronary 64-MDCT angiography. A Phantom Study AJR 190:315–320Google Scholar
  10. 10.
    Hirai N, Horiguchi J, Fujioka C et al (2008) Prospective electrocardiography-triggered versus retrospective electrocardiography-gated 64-slice coronary CT angiography: image quality, stenoses assessment and radiation dose. Radiology 248:424–430PubMedCrossRefGoogle Scholar
  11. 11.
    Hsieh J, Londt J, Vass M, Li J, Tang X, Okerlund D (2006) Step-and-shoot data acquisition and reconstruction for cardiac x-ray computed tomography. Med Phys 33:4236–4248PubMedCrossRefGoogle Scholar
  12. 12.
    Cademartiri F, Mollet N, Lemos PA et al (2005) Usefulness of multislice computed tomographic coronary angiography to assess instent restenosis. Am J Cardiol 96:799–802PubMedCrossRefGoogle Scholar
  13. 13.
    Maintz D, Seifarth H, Raupach R et al (2006) 64-slice multidetector coronary CT angiography: in vitro evaluation of 68 different stents. Eur Radiol 16:818–826PubMedCrossRefGoogle Scholar
  14. 14.
    Seifarth H, Özgün M, Raupach R et al (2006) 64- versus 16-slice CT angiography for coronary artery stent assessment. In vitro experience. Invest Radiol 41:22–27PubMedCrossRefGoogle Scholar
  15. 15.
    Seifarth H, Raupach R, Schaller S et al (2005) Assessment of coronary artery stents using 16-slice MDCT angiography: evaluation of a dedicated reconstruction kernel and a noise reduction filter. Eur Radiol 15:721–726PubMedCrossRefGoogle Scholar
  16. 16.
    Menzel H, Schibilla H, Teunen D(eds) (2000) European guidelines on quality criteria for computed tomography. European Commission, Luxembourg. Available at http://www.drs.dk/guidelines/ct/quality/index.htm. Accessed Dec 2008
  17. 17.
    Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46CrossRefGoogle Scholar
  18. 18.
    Barrett JF, Keat N (2004) Artifacts in CT: recognition and avoidance. RadioGraphics 24:1679–1691PubMedCrossRefGoogle Scholar
  19. 19.
    Husmann L, Valenta I, Gaemperli O (2008) Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. Eur Heart J 29:191–197PubMedCrossRefGoogle Scholar
  20. 20.
    Groen JM, Greuter MJW, van Ooijen PMA, Willems TP, Oudkerk M (2006) Initial results on visualization of coronary artery stents at multiple heart rates on a moving heart phantom using 64-MDCT. JCAT 30:812–817Google Scholar
  21. 21.
    Boll DT, Merkle EM, Paulson EK, Fleiter TR (2008) Coronary stent patency: dual-energy multidetector CT assessment in a pilot study with anthropomorphic phantom. Radiology 247:687–695PubMedCrossRefGoogle Scholar
  22. 22.
    Mahnken AH, Seyfarth T, Flohr T et al (2005) Flat-panel detector computed tomography for the assessment of coronary artery stents: phantom study in comparison with 16-slice spiral computed tomography. Invest Radiol 40:8–13PubMedGoogle Scholar
  23. 23.
    Rybicki FJ, Otero HJ, Steigner ML et al (2008) Initial evaluation of coronary images from 320-detector row computed tomography. Int J Cardiovasc Imaging 24:535–546PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2009

Authors and Affiliations

  • Jun Horiguchi
    • 1
  • Chikako Fujioka
    • 1
  • Masao Kiguchi
    • 1
  • Hideya Yamamoto
    • 2
  • Toshiro Kitagawa
    • 2
  • Shingo Kohno
    • 1
  • Katsuhide Ito
    • 3
  1. 1.Department of Clinical RadiologyHiroshima University HospitalHiroshimaJapan
  2. 2.Department of Molecular and Internal Medicine, Division of Clinical Medical Science, Programs for Applied Biomedicine, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan
  3. 3.Department of Radiology, Division of Medical Intelligence and Informatics, Programs for Applied Biomedicine, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan

Personalised recommendations