European Radiology

, Volume 19, Issue 9, pp 2255–2260 | Cite as

High-resolution MR imaging of periarterial edema associated with biological inflammation in spontaneous carotid dissection

  • Olivier Naggara
  • Emmanuel Touzé
  • Rodolpho Marsico
  • Xavier Leclerc
  • Thanh Nguyen
  • Jean-Louis Mas
  • Jean-Pierre Pruvo
  • Jean-François Meder
  • Catherine Oppenheim
Neuro

Abstract

It has been suggested that spontaneous cervical carotid artery dissection (sCAD) may result from arterial inflammation. Periarterial edema (PAE), occasionally described in the vicinity of the mural hematoma in patients with sCAD, may support this hypothesis. Using cervical high-resolution magnetic resonance imaging, three readers, blinded to the mechanism of carotid artery dissection, searched for PAE, defined as periarterial T2-hyperintensity and T1-hypointensity, in 29 consecutive CAD patients categorized as spontaneous CAD (sCAD, n = 18) or traumatic CAD (tCAD, n = 11; i.e., major head or neck trauma within 2 weeks before the clinical onset). The relationships between PAE, inflammatory biological markers, history of infection and CAD mechanism were explored. Multiple CADs (n = 8) were found only in sCAD patients. Compared with tCAD, patients with sCAD were more likely to have a recent history of infection (OR = 12.5 [95%CI = 1.3–119], p = 0.03), PAE (83% vs. 27%; OR = 13.3 [95%CI = 2.2–82.0], p = 0.005) and to have elevated CRP (OR = 6.1 [95%CI = 1.2–32.1], p = 0.0002) or ESR (OR = 8.8 [95%CI = 1.5–50.1], p = 0.002) values. Interobserver agreement was 0.84 or higher for PAE identification. sCAD was associated with PAE and biological inflammation. Our results support the hypothesis of an underlying arterial inflammation in sCAD.

Keywords

Magnetic resonance imaging (MRI) Cervical artery dissection Carotid disease Inflammation 

References

  1. 1.
    Rubinstein SM, Peerdeman SM, van Tulder MW, Riphagen I, Haldeman S (2005) A systematic review of the risk factors for cervical artery dissection. Stroke 36:1575–1580PubMedCrossRefGoogle Scholar
  2. 2.
    Flis CM, Jager HR, Sidhu PS (2007) Carotid and vertebral artery dissections: clinical aspects, imaging features and endovascular treatment. Eur Radiol 17:820–834PubMedCrossRefGoogle Scholar
  3. 3.
    Volker W, Besselmann M, Dittrich R, Nabavi D, Konrad C, Dziewas R, Evers S, Grewe S, Kramer SC, Bachmann R, Stogbauer F, Ringelstein EB, Kuhlenbaumer G (2005) Generalized arteriopathy in patients with cervical artery dissection. Neurology 64:1508–1513PubMedCrossRefGoogle Scholar
  4. 4.
    Forster K, Poppert H, Conrad B, Sander D (2006) Elevated inflammatory laboratory parameters in spontaneous cervical artery dissection as compared to traumatic dissection: a retrospective case-control study. J Neurol 253:741–745PubMedCrossRefGoogle Scholar
  5. 5.
    Genius J, Dong-Si T, Grau AP, Lichy C (2005) Postacute C-reactive protein levels are elevated in cervical artery dissection. Stroke 36:e42–e44PubMedCrossRefGoogle Scholar
  6. 6.
    Prabhakaran S, Khandji A, Wright CB (2006) Extracranial internal carotid artery dissection with unusual gadolinium enhancement. Neurology 67:536–537PubMedCrossRefGoogle Scholar
  7. 7.
    Bachmann R, Nassenstein I, Kooijman H, Dittrich R, Kugel H, Niederstadt T, Kuhlenbaumer G, Ringelstein EB, Kramer S, Heindel W (2006) Spontaneous acute dissection of the internal carotid artery: high-resolution magnetic resonance imaging at 3.0 tesla with a dedicated surface coil. Invest Radiol 41:105–111PubMedCrossRefGoogle Scholar
  8. 8.
    Bachmann R, Nassenstein I, Kooijman H, Dittrich R, Stehling C, Kugel H, Niederstadt T, Kuhlenbaumer G, Ringelstein EB, Kramer S, Heindel W (2007) High-resolution magnetic resonance imaging (MRI) at 3.0 Tesla in the short-term follow-up of patients with proven cervical artery dissection. Invest Radiol 42:460–466PubMedCrossRefGoogle Scholar
  9. 9.
    Touze E, Toussaint JF, Coste J, Schmitt E, Bonneville F, Vandermarcq P, Gauvrit JY, Douvrin F, Meder JF, Mas JL, Oppenheim C (2007) Reproducibility of high-resolution MRI for the identification and the quantification of carotid atherosclerotic plaque components: consequences for prognosis studies and therapeutic trials. Stroke 38:1812–1819PubMedCrossRefGoogle Scholar
  10. 10.
    Naggara O, Oppenheim C, Toussaint JF, Calvet D, Touze E, Mas JL, Meder JF (2007) Asymptomatic spontaneous acute vertebral artery dissection: diagnosis by high-resolution magnetic resonance images with a dedicated surface coil. Eur Radiol 17:2434–2435PubMedCrossRefGoogle Scholar
  11. 11.
    Touze E, Oppenheim C, Zuber M, Meary E, Meder JF, Mas JL (2003) Early asymptomatic recurrence of cervical artery dissection: three cases. Neurology 61:572–574PubMedGoogle Scholar
  12. 12.
    Touze E, Gauvrit JY, Moulin T, Meder JF, Bracard S, Mas JL (2003) Risk of stroke and recurrent dissection after a cervical artery dissection: a multicenter study. Neurology 61:1347–1351PubMedGoogle Scholar
  13. 13.
    Lindsberg PJ, Grau AJ (2003) Inflammation and infections as risk factors for ischemic stroke. Stroke 34:2518–2532PubMedCrossRefGoogle Scholar
  14. 14.
    Guillon B, Berthet K, Benslamia L, Bertrand M, Bousser MG, Tzourio C (2003) Infection and the risk of spontaneous cervical artery dissection: a case-control study. Stroke 34:e79–e81PubMedCrossRefGoogle Scholar
  15. 15.
    Norris JW, Beletsky V (2000) Carotid dissection and viral illness. Arch Neurol 57:1658–1659PubMedCrossRefGoogle Scholar
  16. 16.
    Grau AJ, Brandt T, Buggle F, Orberk E, Mytilineos J, Werle E, Conradt C, Krause M, Winter R, Hacke W (1999) Association of cervical artery dissection with recent infection. Arch Neurol 56:851–856PubMedCrossRefGoogle Scholar
  17. 17.
    Grau AJ, Brandt T, Forsting M, Winter R, Hacke W (1997) Infection-associated cervical artery dissection. Three cases. Stroke 28:453–455Google Scholar
  18. 18.
    Dowling GP, Buja LM (1987) Spontaneous coronary artery dissection occurs with and without periadventitial inflammation. Arch Pathol Lab Med 111:470–472PubMedGoogle Scholar
  19. 19.
    Mitchinson MJ (1984) Chronic periaortitis and periarteritis. Histopathology 8:589–600PubMedCrossRefGoogle Scholar
  20. 20.
    Parums DV, Brown DL, Mitchinson MJ (1990) Serum antibodies to oxidized low-density lipoprotein and ceroid in chronic periaortitis. Arch Pathol Lab Med 114:383–387PubMedGoogle Scholar
  21. 21.
    Bley TA, Wieben O, Vaith P, Schmidt D, Ghanem NA, Langer M (2004) Magnetic resonance imaging depicts mural inflammation of the temporal artery in giant cell arteritis. Arthritis Rheum 51:1062–1063PubMedCrossRefGoogle Scholar
  22. 22.
    Matsunaga N, Hayashi K, Sakamoto I, Matsuoka Y, Ogawa Y, Honjo K, Takano K (1998) Takayasu arteritis: MR manifestations and diagnosis of acute and chronic phase. J Magn Reson Imaging 8:406–414PubMedCrossRefGoogle Scholar
  23. 23.
    Meller J, Grabbe E, Becker W, Vosshenrich R (2003) Value of F-18 FDG hybrid camera PET and MRI in early Takayasu aortitis. Eur Radiol 13:400–405PubMedGoogle Scholar

Copyright information

© European Society of Radiology 2009

Authors and Affiliations

  • Olivier Naggara
    • 1
  • Emmanuel Touzé
    • 2
  • Rodolpho Marsico
    • 1
  • Xavier Leclerc
    • 3
  • Thanh Nguyen
    • 4
  • Jean-Louis Mas
    • 2
  • Jean-Pierre Pruvo
    • 3
  • Jean-François Meder
    • 1
  • Catherine Oppenheim
    • 1
  1. 1.Department of NeuroradiologyParis-Descartes UniversityParisFrance
  2. 2.Department of NeurologyParis-Descartes UniversityParisFrance
  3. 3.Department of NeuroradiologyUniversity Hospital Roger SalengroLilleFrance
  4. 4.Department of Neurology, Neurosurgery, and RadiologyBoston University Medical CenterBostonUSA

Personalised recommendations