Advertisement

European Radiology

, Volume 19, Issue 7, pp 1645–1652 | Cite as

Automatic selection of optimal systolic and diastolic reconstruction windows for dual-source CT coronary angiography

  • H. SeifarthEmail author
  • M. Puesken
  • S. Wienbeck
  • D. Maintz
  • R. Fischbach
  • W. Heindel
  • K.-U. Juergens
Cardiac

Abstract

The aim of this study was to assess the performance of a motion-map algorithm that automatically determines optimal reconstruction windows for dual-source coronary CT angiography. In datasets from 50 consecutive patients, optimal systolic and diastolic reconstruction windows were determined using the motion-map algorithm. For manual determination of the optimal reconstruction window, datasets were reconstructed in 5% steps throughout the RR interval. Motion artifacts were rated for each major coronary vessel using a five-point scale. Mean motion scores using the motion-map algorithm were 2.4 ± 0.8 for systolic reconstructions and 1.9 ± 0.8 for diastolic reconstructions. Using the manual approach, overall motion scores were significantly better (1.9 ± 0.5 and 1.7 ± 0.6, p < 0.05), but diagnostic image quality was reached in >90% of cases using either approach. Using the automated approach, there was a negative correlation between heart rate and motion scores for systolic reconstructions (ρ = −0.26, p < 0.05) and a positive correlation for diastolic reconstructions (ρ = 0.46, p < 0.01). For the manual approach, no significant correlation was found for systolic reconstructions (ρ = −0.1, p = 0.52), while there was a positive correlation for diastolic reconstructions (ρ = 0.48, p < 0.01). Thus, the motion-map algorithm is a useful tool to save time in finding an appropriate reconstruction window in patients with heart rates <70 bpm (diastolic reconstruction) and >80 bpm (systolic reconstruction).

Keywords

Cardiac CT Reconstruction window Motion map Dual-source CT 

References

  1. 1.
    Herzog C, Zwerner PL, Doll JR, Nielsen CD, Nguyen SA, Savino G, Vogl TJ, Costello P, Schoepf UJ (2007) Significant coronary artery stenosis: comparison on per-patient and per-vessel or per-segment basis at 64-section CT angiography. Radiology 244:112–120PubMedCrossRefGoogle Scholar
  2. 2.
    Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA (2005) Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46:552–557PubMedCrossRefGoogle Scholar
  3. 3.
    Flohr TG, McCollough CH, Bruder H, Petersilka M, Gruber K, Suss C, Grasruck M, Stierstorfer K, Krauss B, Raupach R, Primak AN, Kuttner A, Achenbach S, Becker C, Kopp A, Ohnesorge BM (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268PubMedCrossRefGoogle Scholar
  4. 4.
    Matt D, Scheffel H, Leschka S, Flohr T, Marincek B, Kaufmann P, Alkadhi H (2007) Dual-source CT coronary angiography: image quality, mean heart rate, and heart rate variability. AJR 189:567–573PubMedCrossRefGoogle Scholar
  5. 5.
    Johnson T, Nikolaou K, Wintersperger B, Leber A, von Ziegler F, Rist C, Buhmann S, Knez A, Reiser M, Becker C (2006) Dual-source CT cardiac imaging: initial experience. Eur Radiol 16:1409–1415PubMedCrossRefGoogle Scholar
  6. 6.
    Scheffel H, Alkadhi H, Plass A, Vachenauer R, Desbiolles L, Gaemperli O, Schepis T, Frauenfelder T, Schertler T, Husmann L, Grunenfelder J, Genoni M, Kaufmann PA, Marincek B, Leschka S (2006) Accuracy of dual-source CT coronary angiography: First experience in a high pre-test probability population without heart rate control. Eur Radiol 16:2739–2747PubMedCrossRefGoogle Scholar
  7. 7.
    Leschka S, Scheffel H, Desbiolles L, Plass A, Gaemperli O, Valenta I, Husmann L, Flohr TG, Genoni M, Marincek B, Kaufmann PA, Alkadhi H (2007) Image quality and reconstruction intervals of dual-source CT coronary angiography: recommendations for ECG-pulsing windowing. Invest Radiol 42:543–549PubMedCrossRefGoogle Scholar
  8. 8.
    Herzog C, Arning-Erb M, Zangos S, Eichler K, Hammerstingl R, Dogan S, Ackermann H, Vogl T (2006) Multi-detector row CT coronary angiography: influence of reconstruction technique and heart rate on image quality. Radiology 238:75–86PubMedCrossRefGoogle Scholar
  9. 9.
    Achenbach S, Ropers D, Kuettner A, Flohr T, Ohnesorge B, Bruder H, Theessen H, Karakaya M, Daniel WG, Bautz W, Kalender WA, Anders K (2006) Contrast-enhanced coronary artery visualization by dual-source computed tomography-initial experience. Eur J Radiol 57:331–335PubMedCrossRefGoogle Scholar
  10. 10.
    Leschka S, Husmann L, Desbiolles LM, Gaemperli O, Schepis T, Koepfli P, Boehm T, Marincek B, Kaufmann PA, Alkadhi H (2006) Optimal image reconstruction intervals for non-invasive coronary angiography with 64-slice CT. Eur Radiol 16:1964–1972PubMedCrossRefGoogle Scholar
  11. 11.
    Wintersperger B, Nikolaou K, von Ziegler F, Johnson T, Rist C, Leber A, Flohr T, Knez A, Reiser M, Becker C (2006) Image quality, motion artifacts, and reconstruction timing of 64-slice coronary computed tomography angiography with 0.33-second rotation speed. Invest Radiol 41:436–442PubMedCrossRefGoogle Scholar
  12. 12.
    Manzke R, Kohler T, Nielsen T, Hawkes D, Grass M (2004) Automatic phase determination for retrospectively gated cardiac CT. Med Phys 31:3345–3362PubMedCrossRefGoogle Scholar
  13. 13.
    Hoffmann MH, Lessick J, Manzke R, Schmid FT, Gershin E, Boll DT, Rispler S, Aschoff AJ, Grass M (2006) Automatic determination of minimal cardiac motion phases for computed tomography imaging: initial experience. Eur Radiol 16:365–373PubMedCrossRefGoogle Scholar
  14. 14.
    Seifarth H, Wienbeck S, Pusken M, Juergens KU, Maintz D, Vahlhaus C, Heindel W, Fischbach R (2007) Optimal systolic and diastolic reconstruction windows for coronary CT angiography using dual-source CT. AJR Am J Roentgenol 189:1317–1323PubMedCrossRefGoogle Scholar
  15. 15.
    Brodoefel H, Burgstahler C, Tsiflikas I, Reimann A, Schroeder S, Claussen CD, Heuschmid M, Kopp AF (2008) Dual-source CT: effect of heart rate, heart rate variability, and calcification on image quality and diagnostic accuracy. Radiology 247:346–355PubMedCrossRefGoogle Scholar
  16. 16.
    Rixe J, Rolf A, Conradi G, Elsaesser A, Moellmann H, Nef HM, Bachmann G, Hamm CW, Dill T (2008) Image quality on dual-source computed-tomographic coronary angiography. Eur Radiol 18:1857–1862PubMedCrossRefGoogle Scholar
  17. 17.
    Hoffmann M, Shi H, Manzke R, Schmid F, De Vries L, Grass M, Brambs H, Aschoff A (2005) Noninvasive coronary angiography with 16-detector row CT: effect of heart rate. Radiology 234:86–97PubMedCrossRefGoogle Scholar
  18. 18.
    Kachelriess M, Sennst D, Maxlmoser W, Kalender W (2002) Kymogram detection and kymogram-correlated image reconstruction from subsecond spiral computed tomography scans of the heart. Med Phys 29:1489–1503PubMedCrossRefGoogle Scholar
  19. 19.
    Ertel D, Pflederer T, Achenbach S, Kachelriess M, Steffen P, Kalender WA (2008) Validation of a raw data-based synchronization signal (kymogram) for phase-correlated cardiac image reconstruction. Eur Radiol 18:253–262PubMedCrossRefGoogle Scholar
  20. 20.
    Seifarth H, Maintz D, Jürgens K, Bruder H, Heindel W, Fischbach R (2006) Electrocardiogram-independent image reconstruction in cardiac multidetector computed tomography using retrospective motion synchronization. Invest Radiol 41:898–903PubMedCrossRefGoogle Scholar
  21. 21.
    McCollough CH, Primak AN, Saba O, Bruder H, Stierstorfer K, Raupach R, Suess C, Schmidt B, Ohnesorge BM, Flohr TG (2007) Dose performance of a 64-channel dual-source CT scanner. Radiology 243:775–784PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2009

Authors and Affiliations

  • H. Seifarth
    • 1
    Email author
  • M. Puesken
    • 1
  • S. Wienbeck
    • 1
  • D. Maintz
    • 1
  • R. Fischbach
    • 2
  • W. Heindel
    • 1
  • K.-U. Juergens
    • 1
  1. 1.Department of Clinical RadiologyUniversity of MuensterMuensterGermany
  2. 2.Department of RadiologyAsklepios Klinik Hamburg AltonaHamburgGermany

Personalised recommendations