Advertisement

European Radiology

, Volume 19, Issue 6, pp 1512–1518 | Cite as

Glucosamine sulfate effect on the degenerated patellar cartilage: preliminary findings by pharmacokinetic magnetic resonance modeling

  • Luis Martí-Bonmatí
  • Roberto Sanz-Requena
  • José Luis Rodrigo
  • Ángel Alberich-Bayarri
  • José Miguel Carot
Musculoskeletal

Abstract

Normal and degenerated cartilages have different magnetic resonance (MR) capillary permeability (Ktrans) and interstitial interchangeable volume (ve). Our hypothesis was that glucosamine sulfate treatment modifies these neovascularity abnormalities in osteoarthritis. Sixteen patients with patella degeneration, randomly distributed into glucosamine or control groups, underwent two 1.5-Tesla dynamic contrast-enhanced MR imaging studies (treatment initiation and after 6 months). The pain visual analog scale (VAS) and American Knee Society (AKS) score were used. A two-compartment pharmacokinetic model was used. Percentages of variations (postreatment-pretreatment/pretreatment) were compared (t-test for independent data). In the glucosamine group, pain and functional outcomes statistically improved (VAS: 7.3 ± 1.1 to 3.6 ± 1.3, p < 0.001; AKS: 18.6 ± 6.9 to 42.9 ± 2.7, p < 0.01). Glucosamine significantly increased Ktrans at 6 months (−54.4 ± 21.2% vs 126.7 ± 56.9%, p < 0.001, control vs glucosamine). In conclusion, glucosamine sulfate decreases pain while improving functional outcome in patients with cartilage degeneration. Glucosamine sulfate increases Ktrans, allowing its proposal as a surrogate imaging biomarker after 6 months of treatment.

Keywords

Pharmacokinetics Cartilage Glucosamine Osteoarthritis MR 

Notes

Acknowledgments

Grant support

Part of this work was supported by a grant from Rottapharm S.L., Valencia, Spain.

References

  1. 1.
    Krasnokutsky S, Samuels J, Abramson SB (2007) Osteoarthritis in 2007. Bulletin NYU Hosp Jt Dis 65:222–228Google Scholar
  2. 2.
    Sanz R, Marti-Bonmati L, Rodrigo JL, Moratal D (2008) MR pharmacokinetic modeling of the patellar cartilage differentiates normal from pathological conditions. J Magn Reson Imaging 27:171–177PubMedCrossRefGoogle Scholar
  3. 3.
    Gold GE, McCauley TR, Gray ML, Disler DG (2003) What’s new in cartilage? Radiographics 23:1227–1242PubMedCrossRefGoogle Scholar
  4. 4.
    Brittberg M, Winalski CS (2003) Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 85:58–69PubMedGoogle Scholar
  5. 5.
    Bobinac D, Spanjol J, Zoricic S, Maric I (2003) Changes in articular cartilage and subchondral bone histomorphometry in osteoarthritic knee joints in humans. Bone 32:284–290PubMedCrossRefGoogle Scholar
  6. 6.
    Enomoto H, Inoki I, Komiya K, Shiomi T, Ikeda E, Obata K, Matsumoto H, Toyama Y, Okada Y (2003) Vascular endothelial growth factor isoforms and their receptors are expressed in human osteoarthritic cartilage. Am J Pathol 162:171–181PubMedGoogle Scholar
  7. 7.
    Murata M, Yudoh K, Masuko K (2008) The potential role of vascular endothelial growth factor (VEGF) in cartilage. How the angiogenic factor could be involved in the pathogenesis of osteoarthritis? Osteoarthritis Cartilage 16:279–286PubMedCrossRefGoogle Scholar
  8. 8.
    Walsh DA, Bonnet CS, Turner EL, Wilson D, Situ M, McWilliams DF (2007) Angiogenesis in the synovium and at the osteochondral junction in osteoarthritis. Osteoarthritis Cartilage 15:743–751PubMedCrossRefGoogle Scholar
  9. 9.
    Smith JO, Oreffo ROC, Clarke NMP, Roach HI (2003) Changes in the antiangiogenic properties of articular cartilage in osteoarthritis. J Orthop Sci 8:849–857PubMedCrossRefGoogle Scholar
  10. 10.
    Jackson A, Jayson GC, Li KL, Zhu XP, Checkley DR, Tessier JJ, Waterton JC (2003) Reproducibility of quantitative dynamic contrast-enhanced MRI in newly presenting glioma. Br J Radiol 76:153–162PubMedCrossRefGoogle Scholar
  11. 11.
    Padhani AR (2002) Dynamic contrast-enhanced MRI in clinical oncology: current status and future directions. J Magn Reson Imaging 16:407–422PubMedCrossRefGoogle Scholar
  12. 12.
    Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, Larsson HB, Lee TY, Mayr NA, Parker GJ, Port RE, Taylor J, Weisskoff RM (1999) Estimating kinetic parameters from dynamic contrast-enhanced T1-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232PubMedCrossRefGoogle Scholar
  13. 13.
    Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 7:91–101PubMedCrossRefGoogle Scholar
  14. 14.
    Rovati LC, Pavelka K, Giacovelli G, Reginster JY (2006) Assessment of joint space narrowing with conventional standing antero-posterior radiographs: relief in mild-to-moderate pain is not a confounder in recent osteoarthritis structure-modifying drug trials. Osteoarthritis Cartilage 14(Suppl A):A14–A18PubMedCrossRefGoogle Scholar
  15. 15.
    Bruyer O, Pavelka K, Rovati LC, Deroisy R, Olejarova M, Gatterova J, Giacovelli G, Reginster JY (2004) Glucosamine sulfate reduces osteoarthritis progression in postmenopausal women with knee osteoarthritis: evidence from two 3-year studies. Menopause 11:138–143CrossRefGoogle Scholar
  16. 16.
    Liow RY, Walker K, Wajid MA, Bedi G, Lennox CME (2000) The reliability of the American Knee Society Score. Acta Orthop Scand 71:603–608PubMedCrossRefGoogle Scholar
  17. 17.
    Marquardt D (1963) An algorithm for least squares estimation of nonlinear parameters. J Soc Indust Appl Math 11:431–441CrossRefGoogle Scholar
  18. 18.
    Imhof H, Sulzbacher I, Grampp S, Czerny C, Youssefzadeh S, Kainberger F (2000) Subchondral bone and cartilage disease: a rediscovered functional unit. Invest Radiol 35:581–588PubMedCrossRefGoogle Scholar
  19. 19.
    Slater RNS, Spencer JD, Churchill MA, Bridgeman GP, Brookes M (1991) Observations on the intrinsic blood supply to the human patella: disruption correlated with articular surface degeneration. J R Soc Med 84:606–607PubMedGoogle Scholar
  20. 20.
    Scharf J, Kemmling A, Hess T, Mehrabi A, Kauffmann G, Groden C, Brix G (2007) Assessment of hepatic perfusion in transplanted livers by pharmacokinetic analysis of dynamic magnetic resonance measurements. Invest Radiol 42:224–229PubMedCrossRefGoogle Scholar
  21. 21.
    Martí-Bonmatí L, Sanz-Requena R, Alberich-Bayarri A (2008) Pharmacokinetic MR analysis of the cartilage is influenced by field strength. Eur J Radiol 67:448–452PubMedCrossRefGoogle Scholar
  22. 22.
    Buckley DL (2002) Uncertainty in the analysis of tracer kinetics using dynamic contrast-enhanced T1-weighted MRI. Magn Reson Med 47:601–606PubMedCrossRefGoogle Scholar
  23. 23.
    Padhani AR, Hayes C, Landau S, Leach MO (2002) Reproducibility of quantitative dynamic MRI of normal human tissues. NMR Biomed 15:143–153PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2009

Authors and Affiliations

  • Luis Martí-Bonmatí
    • 1
    • 2
  • Roberto Sanz-Requena
    • 2
  • José Luis Rodrigo
    • 3
  • Ángel Alberich-Bayarri
    • 2
  • José Miguel Carot
    • 4
  1. 1.Radiology DepartmentDr Peset University HospitalValenciaSpain
  2. 2.Radiology DepartmentHospital Quirón ValenciaValenciaSpain
  3. 3.Traumatology and Orthopedics Surgery DepartmentDr Peset University HospitalValenciaSpain
  4. 4.EIO DepartmentUniversidad Politecnica de ValenciaValenciaSpain

Personalised recommendations