European Radiology

, Volume 19, Issue 4, pp 1035–1042 | Cite as

Cardiac phase-correlated image reconstruction and advanced image processing in pulmonary CT imaging

  • Robert M. Lapp
  • Marc Kachelrieß
  • Dirk Ertel
  • Yiannis Kyriakou
  • Willi A. Kalender


Image quality in pulmonary CT imaging is commonly degraded by cardiac motion artifacts. Phase-correlated image reconstruction algorithms known from cardiac imaging can reduce motion artifacts but increase image noise and conventionally require a concurrently acquired ECG signal for synchronization. Techniques are presented to overcome these limitations. Based on standard and phase-correlated images that are reconstructed using a raw data-derived synchronization signal, image-merging and temporal-filtering techniques are proposed that combine the input images automatically or interactively. The performance of the approaches is evaluated in patient and phantom datasets. In the automatic approach, areas of strong motion and static areas were well detected, providing an optimal combination of standard and phase-correlated images with no visible border between the merged regions. Image noise in the non-moving regions was reduced to the noise level of the standard reconstruction. The application of the interactive filtering allowed for an optimal adaptation of image noise and motion artifacts. Noise content after interactive filtering decreased with increasing temporal filter width used. We conclude that a combination of our motion-free merging approach and a dedicated interactive filtering procedure can highly improve pulmonary imaging with respect to motion artifacts and image noise.


CT Pulmonary imaging Motion-free merging Kymogram 


  1. 1.
    Schoepf UJ, Becker CR, Bruening RD, Helmberger T, Staebler A, Leimeister P, Reiser MF (1999) Electrocardiographically gated thin-section CT of the lung. Radiology 212(3):649–654PubMedGoogle Scholar
  2. 2.
    Marten K, Funke M, Rummeny EJ, Engelke C (2005) Electrocardiographic assistance in multidetector CT of thoracic disorders. Clin Radiol 60:8–21PubMedCrossRefGoogle Scholar
  3. 3.
    Schaller S, Wildberger JE, Raupach R, Niethammer M, Klingenback-Regn K, Flohr T (2003) Spatial domain filtering for fast modification of the tradeoff between image sharpness and pixel noise in computed tomography. IEEE Trans Med Imag 22(7):846–853CrossRefGoogle Scholar
  4. 4.
    La Riviere P (2005) Penalized-likelihood sinogram smoothing for low-dose CT. Med Phys 32(6):1676–1683PubMedCrossRefGoogle Scholar
  5. 5.
    Schilham AMR, van Ginneken B , Hietema H, Prokop M (2006) Local noise weighted filtering for emphysema scoring of low-dose CT-images. IEEE Trans Med Imag 25(4):451–463CrossRefGoogle Scholar
  6. 6.
    Ertel D, Kachelrieß M, Kalender WA (2007) Histogram-driven multi-dimensional adaptive filtering (HD-MAF). IEEE MIC Conf Rec 4:2749–2753Google Scholar
  7. 7.
    Kachelrieß M, Kalender WA (1999) Computertomograph mit objektbezogener Bewegungsartefaktreduktion und Extraktion der Objektbewegungsinformation (Kymogramm). European Patent Office, Patent pending, patent no. 99111708.6–1522Google Scholar
  8. 8.
    Kachelrieß M, Sennst D, Maxlmoser W, Kalender WA (2002) Kymogram detection and kymogram-correlated image reconstruction from subsecond spiral computed tomography scans of the heart. Med Phys 29(7):1489–1503PubMedCrossRefGoogle Scholar
  9. 9.
    Ertel D, Pflederer T, Achenbach S, Kachelrieß M, Steffen P, Kalender WA (2008) Validation of a raw data-based synchronization signal (kymogram) for a phase-correlated cardiac image reconstruction. Eur Radiol 18(2):253–262PubMedCrossRefGoogle Scholar
  10. 10.
    Lapp RM, Kachelrieß M, Sennst D, Lell MM, Dassel M, Kalender WA (2003) Merging motion-free kymogram-correlated CT images with low noise standard CT images for optimized pericardial lung imaging. Supplement to Radiology 428, Radiological Society of North AmericaGoogle Scholar
  11. 11.
    Kachelrieß M, Kalender WA (1998) Electrocardiogram-correlated image reconstruction from subsecond spiral computed tomography scans of the heart. Med Phys 25(12):2417–2431PubMedCrossRefGoogle Scholar
  12. 12.
    Ertel D, Kachelrieß M, Pflederer T, Achenbach S, Lapp RM, Nagel M, Kalender WA (2006) Rawdata-based detection of the optimal reconstruction phase in ECG-gated cardiac image reconstruction. Lect Notes Comput Sci 4191:348–355CrossRefGoogle Scholar
  13. 13.
    Soille P (2002) Morphological image analysis: principles and applications. Springer, BerlinGoogle Scholar
  14. 14.
    Kachelrieß M, Ulzheimer S, Kalender WA (2000) ECG-correlated image reconstruction from subsecond multi-slice spiral CT scans of the heart. Med Phys 27(8):1881–1902PubMedCrossRefGoogle Scholar
  15. 15.
    Kachelrieß M, Schaller S, Kalender WA (2000) Advanced single-slice rebinning in cone-beam spiral CT. Med Phys 27(4):754–772PubMedCrossRefGoogle Scholar
  16. 16.
    Kachelriess M, Knaup M, Kalender WA (2006) Multithreaded cardiac CT. Med Phys 33(7):2435–2447PubMedCrossRefGoogle Scholar
  17. 17.
    Ertel D, Kröber E, Kyriakou Y, Langner O, Kalender WA (2008) MTF-based assessment of temporal resolution: validation for single source CT and dual source CT. Radiology 248(3):1013–1017PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2008

Authors and Affiliations

  • Robert M. Lapp
    • 1
  • Marc Kachelrieß
    • 2
  • Dirk Ertel
    • 2
  • Yiannis Kyriakou
    • 2
  • Willi A. Kalender
    • 2
  1. 1.VAMP GmbHErlangenGermany
  2. 2.Institute of Medical Physics (IMP)University of Erlangen–NürnbergErlangenGermany

Personalised recommendations