European Radiology

, Volume 19, Issue 2, pp 509–515 | Cite as

Effects of percutaneous transluminal angioplasty on muscle BOLD-MRI in patients with peripheral arterial occlusive disease: preliminary results

  • Rolf W. Huegli
  • Anja-Carina Schulte
  • Markus Aschwanden
  • Christoph Thalhammer
  • Sebastian Kos
  • Augustinus L. Jacob
  • Deniz Bilecen
Vascular-Interventional

Abstract

The purpose was to evaluate the effect of percutaneous transluminal angioplasty (PTA) of the superficial femoral artery (SFA) on the blood oxygenation level-dependent (BOLD) signal change in the calf musculature of patients with intermittent claudication. Ten patients (mean age, 63.4 ± 11.6 years) with symptomatic peripheral arterial occlusive disease (PAOD) caused by SFA stenoses were investigated before and after PTA. Patients underwent BOLD-MRI 1 day before and 6 weeks after PTA. A T2*-weighted single-shot multi-echo echo-planar MR-imaging technique was applied. The BOLD measurements were acquired at mid-calf level during reactive hyperaemia at 1.5 T. This transient hyperperfusion of the muscle tissue was provoked by suprasystolic cuff compression. Key parameters describing the BOLD signal curve included maximum T2* (T2*max), time-to-peak to reach T2*max (TTP) and T2* end value (EV) after 600 s of hyperemia. Paired t-tests were applied for statistic comparison. Between baseline and post-PTA, T2*max increased from 11.1 ± 3.6% to 12.3 ± 3.8% (p = 0.51), TTP decreased from 48.5 ± 20.8 s to 35.3 ± 11.6 s (p = 0.11) and EV decreased from 6.1 ± 6.4% to 5.0 ± 4.2% (p = 0.69). In conclusion, BOLD-MRI reveals changes of the key parameters T2*max, TTP, and EV after successful PTA of the calf muscles during reactive hyperaemia.

Keywords

Percutaneous transluminal angioplasty Atherosclerosis Muscle Magnetic resonance imaging perfusion 

References

  1. 1.
    Diehm C, Schuster A, Allenberg JR, Darius H, Haberl R, Lange S, Pittrow D, von Stritzky B, Tepohl G, Trampisch HJ (2004) High prevalence of peripheral arterial disease and co-morbidity in 6880 primary care patients: cross-sectional study. Atherosclerosis 172:95–105PubMedCrossRefGoogle Scholar
  2. 2.
    Lange S, Diehm C, Darius H, Haberl R, Allenberg JR, Pittrow D, Schuster A, von Stritzky B, Tepohl G, Trampisch HJ (2003) High prevalence of peripheral arterial disease but low antiplatelet treatment rates in elderly primary care patients with diabetes. Diabetes Care 26:3357–3358PubMedCrossRefGoogle Scholar
  3. 3.
    Clyne CA, Mears H, Weller RO, O, Donnell TF (1985) Calf muscle adaptation to peripheral vascular disease. Cardiovasc Res 19:507–512PubMedCrossRefGoogle Scholar
  4. 4.
    Henriksson J, Nygaard E, Andersson J, Eklof B (1980) Enzyme activities, fibre types and capillarization in calf muscles of patients with intermittent claudication. Scand J Clin Lab Invest 40:361–369PubMedCrossRefGoogle Scholar
  5. 5.
    Regensteiner JG, Wolfel EE, Brass EP, Carry MR, Ringel SP, Hargarten ME, Stamm ER, Hiatt WR (1993) Chronic changes in skeletal muscle histology and function in peripheral arterial disease. Circulation 87:413–421PubMedGoogle Scholar
  6. 6.
    Dormandy JA, Rutherford RB (2000) Management of peripheral arterial disease (PAD). TASC Working Group. TransAtlantic Inter-Society Consensus (TASC). J Vasc Surg 31:S1–S296PubMedCrossRefGoogle Scholar
  7. 7.
    Stein R, Hriljac I, Halperin JL, Gustavson SM, Teodorescu V, Olin JW (2006) Limitation of the resting ankle-brachial index in symptomatic patients with peripheral arterial disease. Vasc Med 11:29–33CrossRefGoogle Scholar
  8. 8.
    Lebon V, Brillault-Salvat C, Bloch G, Leroy-Willig A, Carlier PG (1998) Evidence of muscle BOLD effect revealed by simultaneous interleaved gradient-echo NMRI and myoglobin NMRS during leg ischemia. Magn Reson Med 40:551–558PubMedCrossRefGoogle Scholar
  9. 9.
    Lebon V, Carlier PG, Brillault-Salvat C, Leroy-Willig A (1998) Simultaneous measurement of perfusion and oxygenation changes using a multiple gradient-echo sequence: application to human muscle study. Magn Reson Imaging 16:721–729PubMedCrossRefGoogle Scholar
  10. 10.
    Noseworthy MD, Bulte DP, Alfonsi J (2003) BOLD magnetic resonance imaging of skeletal muscle. Semin Musculoskelet Radiol 7:307–315PubMedCrossRefGoogle Scholar
  11. 11.
    Noseworthy MD, Kim JK, Stainsby JA, Stanisz GJ, Wright GA (1999) Tracking oxygen effects on MR signal in blood and skeletal muscle during hyperoxia exposure. J Magn Reson Imaging 9:814–820PubMedCrossRefGoogle Scholar
  12. 12.
    Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872PubMedCrossRefGoogle Scholar
  13. 13.
    Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, Cheng HM, Brady TJ, Rosen BR (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89:5675–5679PubMedCrossRefGoogle Scholar
  14. 14.
    Uludag K, Dubowitz DJ, Yoder EJ, Restom K, Liu TT, Buxton RB (2004) Coupling of cerebral blood flow and oxygen consumption during physiological activation and deactivation measured with fMRI. Neuroimage 23:148–155PubMedCrossRefGoogle Scholar
  15. 15.
    Carlier PG, Bertoldi D, Baligand C, Wary C, Fromes Y (2006) Muscle blood flow and oxygenation measured by NMR imaging and spectroscopy. NMR Biomed 19:954–967PubMedCrossRefGoogle Scholar
  16. 16.
    Donahue KM, Van Kylen J, Guven S, El-Bershawi A, Luh WM, Bandettini PA, Cox RW, Hyde JS, Kissebah AH (1998) Simultaneous gradient-echo/spin-echo EPI of graded ischemia in human skeletal muscle. J Magn Reson Imaging 8:1106–1113PubMedCrossRefGoogle Scholar
  17. 17.
    Toussaint JF, Kwong KK, M’kparu FO, Weisskoff RM, LaRaia PJ, Kantor HL, M, Kparu F (1996) Perfusion changes in human skeletal muscle during reactive hyperemia measured by echo-planar imaging. Magn Reson Med 35:62–69PubMedCrossRefGoogle Scholar
  18. 18.
    Ledermann HP, Schulte AC, Heidecker HG, Aschwanden M, Jager KA, Scheffler K, Steinbrich W, Bilecen D (2006) Blood oxygenation level-dependent magnetic resonance imaging of the skeletal muscle in patients with peripheral arterial occlusive disease. Circulation 113:2929–2935PubMedCrossRefGoogle Scholar
  19. 19.
    Ledermann HP, Heidecker HG, Schulte AC, Thalhammer C, Aschwanden M, Jaeger KA, Scheffler K, Bilecen D (2006) Calf muscles imaged at BOLD MR: correlation with TcPO2 and flowmetry measurements during ischemia and reactive hyperemia—initial experience. Radiology 241:477–484PubMedCrossRefGoogle Scholar
  20. 20.
    Speck O, Hennig J (1998) Functional imaging by I0- and T2*-parameter mapping using multi-image EPI. Magn Reson Med 40:243–248PubMedCrossRefGoogle Scholar
  21. 21.
    Hanna GP, Fujise K, Kjellgren O, Feld S, Fife C, Schroth G, Clanton T, Anderson V, Smalling RW (1997) Infrapopliteal transcatheter interventions for limb salvage in diabetic patients: importance of aggressive interventional approach and role of transcutaneous oximetry. J Am Coll Cardiol 30:664–669PubMedCrossRefGoogle Scholar
  22. 22.
    Wagner HJ, Schmitz R, Alfke H, Klose KJ (2003) Influence of percutaneous transluminal angioplasty on transcutaneous oxygen pressure in patients with peripheral arterial occlusive disease. Radiology 226:791–797PubMedCrossRefGoogle Scholar
  23. 23.
    Mandeville JB, Jenkins BG, Kosofsky BE, Moskowitz MA, Rosen BR, Marota JJ (2001) Regional sensitivity and coupling of BOLD and CBV changes during stimulation of rat brain. Magn Reson Med 45:443–447PubMedCrossRefGoogle Scholar
  24. 24.
    Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM (1995) MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 34:555–566PubMedCrossRefGoogle Scholar
  25. 25.
    Damon BM, Gore JC (2005) Physiological basis of muscle functional MRI: predictions using a computer model. J Appl Physiol 98:264–273PubMedCrossRefGoogle Scholar
  26. 26.
    Duteil S, Wary C, Raynaud JS, Lebon V, Lesage D, Leroy-Willig A, Carlier PG (2006) Influence of vascular filling and perfusion on BOLD contrast during reactive hyperemia in human skeletal muscle. Magn Reson Med 55:450–454PubMedCrossRefGoogle Scholar
  27. 27.
    Berglund B, Eklund B (1981) Reproducibility of treadmill exercise in patients with intermittent claudication. Clin Physiol 1:253–256PubMedCrossRefGoogle Scholar
  28. 28.
    Duong TQ, Yacoub E, Adriany G, Hu X, Ugurbil K, Kim SG (2003) Microvascular BOLD contribution at 4 and 7 T in the human brain: gradient-echo and spin-echo fMRI with suppression of blood effects. Magn Reson Med 49:1019–1027PubMedCrossRefGoogle Scholar
  29. 29.
    Duong TQ, Yacoub E, Adriany G, Hu X, Ugurbil K, Vaughan JT, Merkle H, Kim SG (2002) High-resolution, spin-echo BOLD, and CBF fMRI at 4 and 7 T. Magn Reson Med 48:589–593PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2008

Authors and Affiliations

  • Rolf W. Huegli
    • 1
    • 2
  • Anja-Carina Schulte
    • 3
  • Markus Aschwanden
    • 4
  • Christoph Thalhammer
    • 4
  • Sebastian Kos
    • 1
  • Augustinus L. Jacob
    • 1
  • Deniz Bilecen
    • 1
  1. 1.Department of Radiology, Division of Interventional RadiologyUniversity Hospital BaselBaselSwitzerland
  2. 2.Department of RadiologyKantonsspital BruderholzBruderholzSwitzerland
  3. 3.BiocenterUniversity of BaselBaselSwitzerland
  4. 4.Department of AngiologyUniversity Hospital BaselBaselSwitzerland

Personalised recommendations