Advertisement

European Radiology

, Volume 18, Issue 12, pp 2731–2738 | Cite as

MDCT assessment of airway wall thickness in COPD patients using a new method: correlations with pulmonary function tests

  • Tobias Achenbach
  • Oliver Weinheimer
  • Alexander Biedermann
  • Sabine Schmitt
  • Daniela Freudenstein
  • Edula Goutham
  • Richard Peter Kunz
  • Roland Buhl
  • Christoph Dueber
  • Claus Peter Heussel
Chest

Abstract

Quantitative assessment of airway-wall dimensions by computed tomography (CT) has proven to be a marker of airway-wall remodelling in chronic obstructive pulmonary disease (COPD) patients. The objective was to correlate the wall thickness of large and small airways with functional parameters of airflow obstruction in COPD patients on multi-detector (MD) CT images using a new quantification procedure from a three-dimensional (3D) approach of the bronchial tree. In 31 patients (smokers/COPD, non-smokers/controls), we quantitatively assessed contiguous MDCT cross-sections reconstructed orthogonally along the airway axis, taking the point-spread function into account to circumvent over-estimation. Wall thickness and wall percentage were measured and the per-patient mean/median correlated with FEV1 and FEV1%. A median of 619 orthogonal airway locations was assessed per patient. Mean wall percentage/mean wall thickness/median wall thickness in non-smokers (29.6%/0.69 mm/0.37 mm) was significantly different from the COPD group (38.9%/0.83 mm/0.54 mm). Correlation coefficients (r) between FEV1 or FEV1% predicted and intra-individual means of the wall percentage were −0.569 and −0.560, respectively, with p < 0.001. Depending on the parameter, they were increased for airways of 4 mm and smaller in total diameter, being −0.621 (FEV1) and −0.537 (FEV1%) with p < 0.002. The wall thickness was significantly higher in smokers than in non-smokers. In COPD patients, the wall thickness measured as a mean for a given patient correlated with the values of FEV1 and FEV1% predicted. Correlation with FEV1 was higher when only small airways were considered

Keywords

Airway obstruction Chronic obstructive pulmonary disease Helical computed tomography Computer-assisted diagnosis 

References

  1. 1.
    Gough J (1961) Post mortem differences in “asthma” and in chronic bronchitis. Acta Allergol 16:391–399PubMedGoogle Scholar
  2. 2.
    Huber HL, Koessler KK (1922) The pathology of bronchial asthma. Arch Intern Med 30:689–760Google Scholar
  3. 3.
    Grenier PA, Beigelman-Aubry C, Fetita C, Preteux F, Brauner MW, Lenoir S (2002) New frontiers in CT imaging of airway disease. Eur Radiol 12:1022–1044PubMedCrossRefGoogle Scholar
  4. 4.
    Nakano Y, Muro S, Sakai H, Hirai T, Chin K, Tsukino M, Nishimura K, Itoh H, Pare PD, Hogg JC, Mishima M (2000) Computed tomographic measurements of airway dimensions and emphysema in smokers. Correlation with lung function. Am J Respir Crit Care Med 162:1102–1108PubMedGoogle Scholar
  5. 5.
    Orlandi I, Moroni C, Camiciottoli G, Bartolucci M, Pistolesi M, Villari N, Mascalchi M (2005) Chronic obstructive pulmonary disease: thin-section CT measurement of airway wall thickness and lung attenuation. Radiology 234:604–610PubMedCrossRefGoogle Scholar
  6. 6.
    Aziz ZA, Wells AU, Desai SR, Ellis SM, Walker AE, MacDonald S, Hansell DM (2005) Functional impairment in emphysema: contribution of airway abnormalities and distribution of parenchymal disease. AJR Am J Roentgenol 185:1509–1515PubMedCrossRefGoogle Scholar
  7. 7.
    Tiddens H, Silverman M, Bush A (2000) The role of inflammation in airway disease: remodeling. Am J Respir Crit Care Med 162:S7–S10PubMedGoogle Scholar
  8. 8.
    Haraguchi M, Shimura S, Shirato K (1996) Morphologic aspects of airways of patients with pulmonary emphysema followed by bronchial asthma-like attack. Am J Respir Crit Care Med 153:638–643PubMedGoogle Scholar
  9. 9.
    Hogg JC (2004) Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet 364:709–721PubMedCrossRefGoogle Scholar
  10. 10.
    Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, Cherniack RM, Rogers RM, Sciurba FC, Coxson HO, Pare PD (2004) The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 350:2645–2653PubMedCrossRefGoogle Scholar
  11. 11.
    Hasegawa M, Nasuhara Y, Onodera Y, Makita H, Nagai K, Fuke S, Ito Y, Betsuyaku T, Nishimura M (2006) Airflow limitation and airway dimensions in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 173:1309–1315PubMedCrossRefGoogle Scholar
  12. 12.
    Nakano Y, Wong JC, de Jong PA, Buzatu L, Nagao T, Coxson HO, Elliott WM, Hogg JC, Pare PD (2005) The prediction of small airway dimensions using computed tomography. Am J Respir Crit Care Med 171:142–146PubMedCrossRefGoogle Scholar
  13. 13.
    Weinheimer O, Achenbach T, Bletz C, Düber C, Kauczor H-U, Heussel CP (2008) About objective 3-D analysis of airway geometry in computerized tomography. IEEE Trans Med Imag 27:64–74CrossRefGoogle Scholar
  14. 14.
    Reinhardt JM, D’Souza ND, Hoffman EA (1997) Accurate measurement of intrathoracic airways. IEEE Trans Med Imag 16:820–827CrossRefGoogle Scholar
  15. 15.
    Achenbach T, Weinheimer O, Buschsieweke C, Heussel CP, Thelen M, Kauczor HU (2004) Fully automatic detection and quantification of emphysema on thin section MD-CT of the chest by a new and dedicated software. Rofo 176:1409–1415PubMedGoogle Scholar
  16. 16.
    Heussel CP, Achenbach T, Buschsieweke C, Kuhnigk J, Weinheimer O, Hammer G, Duber C, Kauczor HU (2006) Quantification of pulmonary emphysema in multislice-CT using different software tools. Rofo 178:987–998PubMedGoogle Scholar
  17. 17.
    Palagyi K, Tschirren J, Sonka M (2003) Quantitative analysis of intrathoracic airway trees: methods and validation. Inf Process Med Imaging 18:222–233PubMedGoogle Scholar
  18. 18.
    Tschirren J, McLennan G, Palagyi K, Hoffman EA, Sonka M (2005) Matching and anatomical labeling of human airway tree. IEEE Trans Med Imag 24:1540–1547CrossRefGoogle Scholar
  19. 19.
    Amirav I, Kramer SS, Grunstein MM (2001) Methacholine-induced temporal changes in airway geometry and lung density by CT. Chest 119:1878–1885PubMedCrossRefGoogle Scholar
  20. 20.
    Amirav I, Kramer SS, Grunstein MM, Hoffman EA (1993) Assessment of methacholine-induced airway constriction by ultrafast high-resolution computed tomography. J Appl Physiol 75:2239–2250PubMedGoogle Scholar
  21. 21.
    Dougherty G, Newman D (1999) Measurement of thickness and density of thin structures by computed tomography: a simulation study. Med Phys 26:1341–1348PubMedCrossRefGoogle Scholar
  22. 22.
    Berger P, Laurent F, Begueret H, Perot V, Rouiller R, Raherison C, Molimard M, Marthan R, Tunon-de-Lara JM (2003) Structure and function of small airways in smokers: relationship between air trapping at CT and airway inflammation. Radiology 228:85–94PubMedCrossRefGoogle Scholar
  23. 23.
    Copley SJ, Wells AU, Muller NL, Rubens MB, Hollings NP, Cleverley JR, Milne DG, Hansell DM (2002) Thin-section CT in obstructive pulmonary disease: discriminatory value. Radiology 223:812–819PubMedCrossRefGoogle Scholar
  24. 24.
    Jeffery PK (2001) Remodeling in asthma and chronic obstructive lung disease. Am J Respir Crit Care Med 164:S28–S38PubMedGoogle Scholar
  25. 25.
    Montaudon M, Berger P, de Dietrich G, Braquelaire A, Marthan R, Tunon-de-Lara JM, Laurent F (2007) Assessment of airways with three-dimensional quantitative thin-section CT: in vitro and in vivo validation. Radiology 242:563–572PubMedCrossRefGoogle Scholar
  26. 26.
    Berger P, Perot V, Desbarats P, Tunon-de-Lara JM, Marthan R, Laurent F (2005) Airway wall thickness in cigarette smokers: quantitative thin-section CT assessment. Radiology 235:1055–1064PubMedCrossRefGoogle Scholar
  27. 27.
    Weibel ER (1963) Morphometry of the human lung. Springer, Berlin New YorkGoogle Scholar
  28. 28.
    Bolte H, Muller-Hulsbeck S, Riedel C, Jahnke T, Inan N, Heller M, Biederer J (2004) Ex-vivo injection technique for implanting solid pulmonary nodules into porcine lungs for multi-slice CT. Rofo 176:1380–1384PubMedGoogle Scholar
  29. 29.
    Biederer J, Schoene A, Freitag S, Reuter M, Heller M (2003) Simulated pulmonary nodules implanted in a dedicated porcine chest phantom: sensitivity of MR imaging for detection. Radiology 227:475–483PubMedCrossRefGoogle Scholar
  30. 30.
    Saba OI, Hoffman EA, Reinhardt JM (2003) Maximizing quantitative accuracy of lung airway lumen and wall measures obtained from X-ray CT imaging. J Appl Physiol 95:1063–1075PubMedGoogle Scholar
  31. 31.
    Ghaye B, Szapiro D, Fanchamps JM, Dondelinger RF (2001) Congenital bronchial abnormalities revisited. Radiographics 21:105–119PubMedGoogle Scholar
  32. 32.
    Awadh N, Muller NL, Park CS, Abboud RT, FitzGerald JM (1998) Airway wall thickness in patients with near fatal asthma and control groups: assessment with high resolution computed tomographic scanning. Thorax 53:248–253PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2008

Authors and Affiliations

  • Tobias Achenbach
    • 1
  • Oliver Weinheimer
    • 1
  • Alexander Biedermann
    • 2
  • Sabine Schmitt
    • 1
  • Daniela Freudenstein
    • 1
  • Edula Goutham
    • 3
  • Richard Peter Kunz
    • 1
  • Roland Buhl
    • 2
  • Christoph Dueber
    • 1
  • Claus Peter Heussel
    • 4
  1. 1.Department of Diagnostic and Interventional RadiologyJohannes Gutenberg UniversityMainzGermany
  2. 2.IIIrd Department of Internal Medicine - PneumologyJohannes Gutenberg UniversityMainzGermany
  3. 3.Astra ZenecaLundSweden
  4. 4.Diagnostic and Interventional RadiologyThoraxklinik, University Hospital HeidelbergHeidelbergGermany

Personalised recommendations