European Radiology

, Volume 18, Issue 9, pp 1809–1817 | Cite as

Low kilovoltage cardiac dual-source CT: attenuation, noise, and radiation dose

  • Sebastian Leschka
  • Paul Stolzmann
  • Florian T. Schmid
  • Hans Scheffel
  • Bjoern Stinn
  • Borut Marincek
  • Hatem AlkadhiEmail author
  • Simon Wildermuth


The purpose of this study was to investigate the effect of low kilovoltage dual-source computed tomography coronary angiography (CTCA) on qualitative and quantitative image quality parameters and radiation dose. Dual-source CTCA with retrospective ECG gating was performed in 80 consecutive patients of normal weight. Forty were examined with a standard protocol (120 kV/330mAs), 20 were examined at 100 kV/330mAs, and 20 at 100 kV/220mAs. Two blinded observers independently assessed image quality of each coronary segment and measured the image parameters noise, attenuation, and contrast-to-noise ratio (CNR). The effective radiation dose was calculated using CT dose volume index and the dose-length product. Diagnostic image quality was obtained in 99% of all coronary segments (1,127/1,140) without significant differences among the protocols. Image noise, attenuation, and CNR were significantly higher for 100 kV/330mAs (26 ± 3 HU, 549 ± 62 HU, 25.5 ± 3.2; each P < 0.01) and 100 kV/220mAs (27 ± 2 HU, 560 ± 43 HU, 25.0 ± 2.2; each P < 0.01) when compared to the 120-kV protocol (21 ± 2 HU, 317 ± 28 HU, 20.6 ± 1.7). There was no significant difference between the two 100-kV protocols. Estimated effective radiation dose of the 120-kV protocol (8.9 ± 1.2 mSv) was significantly higher than the 100 kV/330mAs (6.7 ± 0.8 mSv, P < 0.01) or 100 kV/220mAs (4.4 ± 0.6 mSv, P < 0.001) protocols. Dual-source CTCA with 100 kV is feasible in patients of normal weight, results in a diagnostic image quality with a higher CNR, and at the same time significantly reduces the radiation dose.


Dual-source CT coronary angiography Low kilovoltage Radiation exposure Contrast-to-noise ratio 



This research has been supported by the National Center of Competence in Research, Computer Aided and Image Guided Medical Interventions of the Swiss National Science Foundation.


  1. 1.
    Leschka S, Alkadhi H, Plass A et al (2005) Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 26:1482–1487PubMedCrossRefGoogle Scholar
  2. 2.
    Mollet NR, Cademartiri F, van Mieghem CA et al (2005) High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 112:2318–2323PubMedCrossRefGoogle Scholar
  3. 3.
    Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA (2005) Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46:552–557PubMedCrossRefGoogle Scholar
  4. 4.
    Scheffel H, Alkadhi H, Plass A et al (2006) Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur Radiol 16:2739–2747PubMedCrossRefGoogle Scholar
  5. 5.
    Flohr TG, McCollough CH, Bruder H et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268PubMedCrossRefGoogle Scholar
  6. 6.
    Leber AW, Johnson T, Becker A et al (2007) Diagnostic accuracy of dual-source multi-slice CT-coronary angiography in patients with an intermediate pretest likelihood for coronary artery disease. Eur Heart J. 28(19):2354–2360Google Scholar
  7. 7.
    Matt D, Scheffel H, Leschka S et al (2007) Dual-source CT coronary angiography: image quality, mean heart rate, and heart rate variability. AJR Am J Roentgenol 189:567–573PubMedCrossRefGoogle Scholar
  8. 8.
    Hausleiter J, Meyer T, Hadamitzky M et al (2006) Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation 113:1305–1310PubMedCrossRefGoogle Scholar
  9. 9.
    Stolzmann S, Scheffel H, Schertler T et al (2008) Radiation dose estimates in dual-source computed tomography coronary angiography. Eur Radiol. 18(3):592–599Google Scholar
  10. 10.
    Huda W, Scalzetti EM, Levin G (2000) Technique factors and image quality as functions of patient weight at abdominal CT. Radiology 217:430–435PubMedGoogle Scholar
  11. 11.
    Budoff MJ, Achenbach S, Blumenthal RS et al (2006) Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology. Circulation 114:1761–1791PubMedCrossRefGoogle Scholar
  12. 12.
    Leschka S, Scheffel H, Desbiolles L et al (2007) Image quality and reconstruction intervals of dual-source CT coronary angiography: recommendations for ECG pulsing windowing. Invest Radiol 42:543–549PubMedCrossRefGoogle Scholar
  13. 13.
    Austen WG, Edwards JE, Frye RL et al (1975) A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 51:5–40PubMedGoogle Scholar
  14. 14.
    Husmann L, Alkadhi H, Boehm T et al (2006) Influence of cardiac hemodynamic parameters on coronary artery opacification with 64-slice computed tomography. Eur Radiol 16:1111–1116PubMedCrossRefGoogle Scholar
  15. 15.
    Lembcke A, Wiese TH, Schnorr J et al (2004) Image quality of noninvasive coronary angiography using multislice spiral computed tomography and electron-beam computed tomography: intraindividual comparison in an animal model. Invest Radiol 39:357–364PubMedCrossRefGoogle Scholar
  16. 16.
    McCollough CH, Primak AN, Saba O et al (2007) Dose performance of a 64-channel dual-source CT scanner. Radiology 243:775–784PubMedCrossRefGoogle Scholar
  17. 17.
    Menzel H, Schibilla H, Teunen D (eds) (2000) European guidelines on quality criteria for computed tomography. European Commission publication no. EUR 16262 EN. European Commission, LuxembourgGoogle Scholar
  18. 18.
    Gerber TC, Kuzo RS, Morin RL (2005) Techniques and parameters for estimating radiation exposure and dose in cardiac computed tomography. Int J Cardiovasc Imaging 21:165–176PubMedCrossRefGoogle Scholar
  19. 19.
    McNitt-Gray MF (2002) AAPM/RSNA physics tutorial for residents: topics in CT. Radiation dose in CT. Radiographics 22:1541–1553PubMedCrossRefGoogle Scholar
  20. 20.
    Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174PubMedCrossRefGoogle Scholar
  21. 21.
    Leschka S, Husmann L, Desbiolles LM et al (2006) Optimal image reconstruction intervals for non-invasive coronary angiography with 64-slice CT. Eur Radiol 16:1964–1972PubMedCrossRefGoogle Scholar
  22. 22.
    Wintersperger BJ, Nikolaou K, von Ziegler F et al (2006) Image quality, motion artifacts, and reconstruction timing of 64-slice coronary computed tomography angiography with 0.33-second rotation speed. Invest Radiol 41:436–442PubMedCrossRefGoogle Scholar
  23. 23.
    Ferencik M, Nomura CH, Maurovich-Horvat P et al (2006) Quantitative parameters of image quality in 64-slice computed tomography angiography of the coronary arteries. Eur J Radiol 57:373–379PubMedCrossRefGoogle Scholar
  24. 24.
    Pannu HK, Jacobs JE, Lai S, Fishman EK (2006) Coronary CT angiography with 64-MDCT: assessment of vessel visibility. AJR Am J Roentgenol 187:119–126PubMedCrossRefGoogle Scholar
  25. 25.
    Deetjen A, Mollmann S, Conradi G et al (2007) Use of automatic exposure control in multislice computed tomography of the coronaries: comparison of 16-slice and 64-slice scanner data with conventional coronary angiography. Heart 93:1040–1043PubMedCrossRefGoogle Scholar
  26. 26.
    Nakayama Y, Awai K, Funama Y et al (2005) Abdominal CT with low tube voltage: preliminary observations about radiation dose, contrast enhancement, image quality, and noise. Radiology 237:945–951PubMedCrossRefGoogle Scholar
  27. 27.
    Boone JM, Geraghty EM, Seibert JA, Wootton-Gorges SL (2003) Dose reduction in pediatric CT: a rational approach. Radiology 228:352–360PubMedCrossRefGoogle Scholar
  28. 28.
    Brooks RA (1977) A quantitative theory of the Hounsfield unit and its application to dual energy scanning. J Comput Assist Tomogr 1:487–493PubMedCrossRefGoogle Scholar
  29. 29.
    Sigal-Cinqualbre AB, Hennequin R, Abada HT, Chen X, Paul JF (2004) Low-kilovoltage multi-detector row chest CT in adults: feasibility and effect on image quality and iodine dose. Radiology 231:169–174PubMedCrossRefGoogle Scholar
  30. 30.
    Abada HT, Larchez C, Daoud B, Sigal-Cinqualbre A, Paul JF (2006) MDCT of the coronary arteries: feasibility of low-dose CT with ECG-pulsed tube current modulation to reduce radiation dose. AJR Am J Roentgenol 186:S387–S390PubMedCrossRefGoogle Scholar
  31. 31.
    Mulkens TH, Bellinck P, Baeyaert M et al (2005) Use of an automatic exposure control mechanism for dose optimization in multi-detector row CT examinations: clinical evaluation. Radiology 237:213–223Google Scholar
  32. 32.
    Vehmas T, Kivisaari L, Huuskonen MS, Jaakkola MS (2005) Scoring CT/HRCT findings among asbestos-exposed workers: effects of patient’s age, body mass index and common laboratory test results. Eur Radiol 15:213–219PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2008

Authors and Affiliations

  • Sebastian Leschka
    • 1
    • 2
  • Paul Stolzmann
    • 2
  • Florian T. Schmid
    • 1
  • Hans Scheffel
    • 2
  • Bjoern Stinn
    • 1
  • Borut Marincek
    • 2
  • Hatem Alkadhi
    • 2
    Email author
  • Simon Wildermuth
    • 1
  1. 1.Institute of RadiologyKantonsspital St. GallenSt. GallenSwitzerland
  2. 2.Institute of Diagnostic RadiologyUniversity Hospital ZurichZurichSwitzerland

Personalised recommendations