European Radiology

, Volume 18, Issue 8, pp 1727–1735 | Cite as

Proton MR spectroscopy of cerebral gliomas at 3 T: spatial heterogeneity, and tumour grade and extent

  • Alfonso Di Costanzo
  • Tommaso Scarabino
  • Francesca Trojsi
  • Teresa Popolizio
  • Domenico Catapano
  • Giuseppe M. Giannatempo
  • Simona Bonavita
  • Maurizio Portaluri
  • Michela Tosetti
  • Vincenzo A. d’Angelo
  • Ugo Salvolini
  • Gioacchino Tedeschi


This study aimed to evaluate the usefulness of proton MR spectroscopic imaging (1H-MRSI) at 3 T in differentiating high- from low-grade gliomas, and tumour from necrosis, oedema or normal tissue. Forty-four patients with brain gliomas and four with meningiomas were retrospectively reviewed. The normalised metabolites choline (nCho), N-acetylaspartate (nNAA), creatine (nCr) and lactate/lipids (nLL), and the metabolite ratios Cho/NAA, NAA/Cr and Cho/Cr were calculated. Necrotic-appearing areas showed two spectroscopic patterns: “necrosis” with variable nCho and high nLL, and “cystic necrosis” with variable nLL or nonevident peaks. Peri-enhancing oedematous-appearing areas showed three spectroscopic patterns (“tumour” with abnormal Cho/NAA, “oedema” with normal Cho/NAA and “tumour/oedema” with normal nCho and abnormal Cho/NAA) in gliomas, and one (“oedema”) in meningiomas. Peri-enhancing or peri-tumour normal-appearing areas showed two patterns (“infiltrated” with abnormal nCho and/or Cho/NAA and “normal” with normal spectra) in gliomas and one (“normal”) in meningiomas. Discriminant analysis showed that classification accuracy between high- and low-grade glioma masses was better with normalised metabolites or all parameters together than metabolite ratios and that among peri-enhancing areas was much better with normalised metabolites. The analysis of spatial distribution of normalised metabolites by 3-T 1H-MRSI helps to discriminate among different tissues, offering information not available with conventional MRI.


Brain tumour Magnetic resonance imaging Magnetic resonance spectroscopy 



The authors are grateful to Italia Di Maggio, Giovanni Miscio and Piero Ghedin (GE Healthcare) for expert technical assistance.


  1. 1.
    Jackson RJ, Fuller GN, Abi-Said D, Lang FF, Gokaslan ZL, Shi WM, Wildrick DM, Sawaya R (2001) Limitations of stereotactic biopsy in the initial management of gliomas. Neuro-oncol 3:193–200PubMedCrossRefGoogle Scholar
  2. 2.
    Behin A, Hoang-Xuan K, Carpentier AF, Delattre JY (2003) Primary brain tumours in adults. Lancet 361:323–331PubMedCrossRefGoogle Scholar
  3. 3.
    Sartor K (1999) MR imaging of the brain: tumours. Eur Radiol 9:1047–1054PubMedCrossRefGoogle Scholar
  4. 4.
    Pirzkall A, Mcknight TR, Graves EE, Carol MP, Sneed PK, Wara WW, Nelson SJ, Verhey LJ, Larson DA (2001) MR-spectroscopy guided target delineation for high-grade gliomas. Int J Radiat Oncol Biol Phys 50:915–928PubMedCrossRefGoogle Scholar
  5. 5.
    Wilms G, Demaerel P, Sunaert S (2005) Intra-axial brain tumours. Eur Radiol 15:468–484PubMedCrossRefGoogle Scholar
  6. 6.
    Croteau D, Scarpace L, Hearshen D, Gutierrez J, Fisher JL, Rock JP, Mikkelsen T (2001) Correlation between magnetic resonance spectroscopy imaging and image-guided biopsies: semiquantitative and qualitative histopathological analyses of patients with untreated glioma. Neurosurgery 49:823–829PubMedCrossRefGoogle Scholar
  7. 7.
    Dowling C, Bollen AW, Noworolski SM, McDermott MW, Barbaro NM, Day MR, Henry RG, Chang SM, Dillon WP, Nelson SJ, Vigneron DB (2001) Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens. AJNR Am J Neuroradiol 22:604–612PubMedGoogle Scholar
  8. 8.
    Pirzkall A, Nelson SJ, McKnight TR, Takahashi MM, Li X, Graves EE, Verhey LJ, Wara WW, Larson DA, Sneed PK (2002) Metabolic imaging of low-grade gliomas with three-dimensional magnetic resonance spectroscopy. Int J Radiat Oncol Biol Phys 53:1254–1264PubMedCrossRefGoogle Scholar
  9. 9.
    Sijens PE, Oudkerk M (2002) 1H chemical shift imaging characterization of human brain tumor and edema. Eur Radiol 12:2056–2061PubMedGoogle Scholar
  10. 10.
    Tzika AA, Astrakas LG, Zarifi MK, Petridou N, Young-Poussaint T, Goumnerova L, Zurakowski D, Anthony DC, Black PM (2003) Multiparametric MR assessment of pediatric brain tumors. Neuroradiology 45:1–10PubMedCrossRefGoogle Scholar
  11. 11.
    Ishimaru H, Morikawa M, Iwanaga S, Kaminogo M, Ochi M, Hayashi K (2001) Differentiation between high-grade glioma and metastatic brain tumor using single-voxel proton MR spectroscopy. Eur Radiol 11:1784–1791PubMedCrossRefGoogle Scholar
  12. 12.
    Möller-Hartmann W, Herminghaus S, Krings T, Marquardt G, Lanfermann H, Pilatus U, Zanella FE (2002) Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology 44:371–381PubMedCrossRefGoogle Scholar
  13. 13.
    Majós C, Alonso J, Aguilera C, Serrallonga M, Pérez-Martín J, Acebes JJ, Arús C, Gili J (2003) Proton magnetic resonance spectroscopy (1H MRS) of human brain tumours: assessment of differences between tumour types and its applicability in brain tumour categorization. Eur Radiol 13:582–591PubMedGoogle Scholar
  14. 14.
    Setzer M, Herminghaus S, Marquardt G, Tews DS, Pilatus U, Seifert V, Zanella F, Lanfermann H (2007) Diagnostic impact of proton MR-spectroscopy versus image-guided stereotactic biopsy. Acta Neurochir (Wien) 149:379–386CrossRefGoogle Scholar
  15. 15.
    Chen J, Huang S-L, Li T, Chen X-L (2006) In vivo research in astrocytoma cell proliferation with 1H-magnetic resonance spectroscopy: correlation with histopathology and immunohistochemistry. Neuroradiology 48:312–318PubMedCrossRefGoogle Scholar
  16. 16.
    Catalaa I, Henry R, Dillon WP, Graves EE, McKnight TR, Lu Y, Vigneron DB, Nelson SJ (2006) Perfusion, diffusion and spectroscopy values in newly diagnosed cerebral gliomas. NMR Biomed 19:463–475PubMedCrossRefGoogle Scholar
  17. 17.
    Stadlbauer A, Gruber S, Nimsky C, Fahlbusch R, Hammen T, Buslei R, Tomandl B, Moser E, Ganslandt O (2006) Preoperative grading of gliomas by using metabolite quantification with high-spatial-resolution proton MR spectroscopic imaging. Radiology 238:958–969PubMedCrossRefGoogle Scholar
  18. 18.
    Kim J-h, Chang K-H, Na DG, Song IC, Kwon BJ, Han MH, Kim K (2006) 3T 1H-MR spectroscopy in grading of cerebral gliomas: comparison of short and intermediate echo time sequences. AJNR Am J Neuroradiol 27:1412–1418PubMedGoogle Scholar
  19. 19.
    Yerli H, Ağildere AM, Özen O, Geyik E, Atalay B, Elhan AH (2007) Evaluation of cerebral glioma grade by using normal side creatine as an internal reference in multi-voxel 1H-MR spectroscopy. Diagn Interv Radiol 13:3–9PubMedGoogle Scholar
  20. 20.
    Zonari P, Baraldi P, Crisi G (2007) Multimodal MRI in the characterization of glial neoplasms: the combined role of single-voxel MR spectroscopy, diffusion imaging and echo-planar perfusion imaging. Neuroradiology 49:795–803PubMedCrossRefGoogle Scholar
  21. 21.
    Tedeschi G, Lundbom N, Raman R, Bonavita S, Duyn JH, Alger JR, Di Chiro G (1997) Increased choline signal coinciding with malignant degeneration of cerebral gliomas: a serial proton magnetic resonance spectroscopy imaging study. J Neurosurg 87:516–524PubMedGoogle Scholar
  22. 22.
    Laprie A, Pirzkall A, Haas-Kogan DA, Cha S, Banerjee A, Le TP, Lu Y, Nelson SJ, McKnight TR (2005) Longitudinal multivoxel MR spectroscopy study of pediatric diffuse brainstem gliomas treated with radiotherapy. Int J Radiation Oncology Biol Phys 62:20–31CrossRefGoogle Scholar
  23. 23.
    Lichy MP, Plathow C, Schulz-Ertner D, Kauczor HU, Schlemmer HP (2005) Follow-up gliomas after radiotherapy: 1H MR spectroscopic imaging for increasing diagnostic accuracy. Neuroradiology 47:826–834PubMedCrossRefGoogle Scholar
  24. 24.
    Di Costanzo A, Trojsi F, Tosetti M, Schirmer T, Lechner SM, Popolizio T, Scarabino T (2007) Proton MR spectroscopy of the brain at 3 T: an update. Eur Radiol 17:1651–1662PubMedCrossRefGoogle Scholar
  25. 25.
    Hattingen E, Pilatus U, Franz K, Zanella FE, Lanfermann H (2007) Evaluation of optimal echo time for 1H-spectroscopic imaging of brain tumors at 3 Tesla. J Magn Reson Imaging 26:427–431PubMedCrossRefGoogle Scholar
  26. 26.
    Isobe T, Matsumura A, Anno I, Yoshizawa T, Nagatomo Y, Itai Y, Nose T (2002) Quantification of cerebral metabolites in glioma patients with proton MR spectroscopy using T2 relaxation time correction. Magn Reson Imaging 20:343–349PubMedCrossRefGoogle Scholar
  27. 27.
    Yang D, Korogi Y, Sugahara T, Kitajima M, Shigematsu Y, Liang L, Ushio Y, Takahashi M (2002) Cerebral gliomas: prospective comparison of multivoxel 2D chemical-shift imaging proton MR spectroscopy, echoplanar perfusion and diffusion-weighted MRI. Neuroradiology 44:656–666PubMedCrossRefGoogle Scholar
  28. 28.
    Tong Z, Yamaki T, Harada K, Houkin K (2004) In vivo quantification of the metabolites in normal brain and brain tumors by proton MR spectroscopy using water as an internal standard. Magn Reson Imaging 22:1017–1024PubMedCrossRefGoogle Scholar
  29. 29.
    Di Costanzo A, Scarabino T, Trojsi F, Giannatempo GM, Popolizio T, Catapano D, Bonavita S, Maggialetti N, Tosetti M, Salvolini U, d’Angelo VA, Tedeschi G (2006) Multiparametric 3T MR approach to the assessment of cerebral gliomas: tumor extent and malignancy. Neuroradiology 48:622–631PubMedCrossRefGoogle Scholar
  30. 30.
    Herneth AM, Guccione S, Bednarski M (2003) Apparent Diffusion Coefficient: a quantitative parameter for in vivo tumor characterization. Eur J Radiol 45:208–213PubMedCrossRefGoogle Scholar
  31. 31.
    Zoula S, Hérigault G, Ziegler A, Farion R, Décorps M, Rémy C (2003) Correlation between the occurrence of 1H-MRS lipid signal, necrosis and lipid droplets during C6 rat glioma development. NMR Biomed 16:199–212PubMedCrossRefGoogle Scholar
  32. 32.
    Howe FA, Opstad KS (2003) 1H MR spectroscopy of brain tumours and masses. NMR Biomed 16:123–131PubMedCrossRefGoogle Scholar
  33. 33.
    Strugar JG, Criscuolo GR, Rothbart D, Harrington WN (1995) Vascular endothelial growth/permeability factor expression in human glioma specimens: correlation with vasogenic brain edema and tumor-associated cysts. J Neurosurg 83:682–689PubMedCrossRefGoogle Scholar
  34. 34.
    Bitzer M, Klose U, Geist-Barth B, Nägele T, Schick F, Morgalla M, Claussen CD, Voigt K (2002) Alterations in diffusion and perfusion in the pathogenesis of peritumoral brain edema in meningiomas. Eur Radiol 12:2062–2076PubMedGoogle Scholar
  35. 35.
    Watanabe M, Tanaka R, Takeda N (1992) Magnetic resonance imaging and histopathology of cerebral gliomas. Neuroradiology 34:463–469PubMedCrossRefGoogle Scholar
  36. 36.
    Hollingworth W, Medina LS, Lenkinski RE, Shibata DK, Bernal B, Zurakowski D, Comstock B, Jarvik JG (2006) A systematic literature review of magnetic resonance spectroscopy for the characterization of brain tumors. AJNR Am J Neuroradiol 27:1404–1411PubMedGoogle Scholar
  37. 37.
    Bulakbasi N, Kocaoglu M, Örs F, Tayfun C, Üçöz T (2003) Combination of single-voxel proton MR spectroscopy and apparent diffusion coefficient calculation in the evaluation of common brain tumors. AJNR Am J Neuroradiol 23:225–233Google Scholar
  38. 38.
    Chiang IC, Kuo Y-T, Lu C-Y, Yeung K-W, Lin W-C, Sheu F-O, Liu G-C (2004) Distinction between high-grade gliomas and solitary metastases using peritumoral 3-T magnetic resonance spectroscopy, diffusion, and perfusion imagings. Neuroradiology 46:619–627PubMedCrossRefGoogle Scholar
  39. 39.
    Galanaud D, Nicoli F, Chinot O, Confort-Gouny S, Figarella-Branger D, Roche P, Fuentès S, Le Fur Y, Ranjeva JP, Cozzone PJ (2006) Noninvasive diagnostic assessment of brain tumors using combined in vivo MR imaging and spectroscopy. Magn Reson Med 55:1236–1245PubMedCrossRefGoogle Scholar
  40. 40.
    Howe FA, Barton SJ, Cudlip SA, Stubbs M, Saunders DE, Murphy M, Wilkins P, Opstad KS, Doyle VL, McLean MA, Bell BA, Griffiths JR (2003) Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 49:223–232PubMedCrossRefGoogle Scholar
  41. 41.
    Murphy PS, Rowland IJ, Viviers L, Brada M, Leach MO, Dzik-Jurasz AS (2003) Could assessment of glioma methylene lipid resonance by in vivo 1H-MRS be of clinical value? Br J Radiol 76:459–463PubMedCrossRefGoogle Scholar
  42. 42.
    Schlemmer H-P, Bachert P, Herfarth KK, Zuna I, Debus J, van Kaick G (2001) Proton MR spectroscopic evaluation of suspicious brain lesions after stereotactic radiotherapy. AJNR Am J Neuroradiol 22:1316–1324PubMedGoogle Scholar

Copyright information

© European Society of Radiology 2008

Authors and Affiliations

  • Alfonso Di Costanzo
    • 1
  • Tommaso Scarabino
    • 2
  • Francesca Trojsi
    • 3
  • Teresa Popolizio
    • 2
  • Domenico Catapano
    • 4
  • Giuseppe M. Giannatempo
    • 2
  • Simona Bonavita
    • 3
  • Maurizio Portaluri
    • 5
  • Michela Tosetti
    • 6
  • Vincenzo A. d’Angelo
    • 4
  • Ugo Salvolini
    • 7
  • Gioacchino Tedeschi
    • 3
  1. 1.Department of Health SciencesUniversity of MoliseCampobassoItaly
  2. 2.Department of NeuroradiologyScientific Institute “Casa Sollievo della Sofferenza”FoggiaItaly
  3. 3.Department of Neurological SciencesSecond University of NaplesNaplesItaly
  4. 4.Department of NeurosurgeryScientific Institute “Casa Sollievo della Sofferenza”FoggiaItaly
  5. 5.Department of Radiotherapy“Perrino” HospitalBrindisiItaly
  6. 6.Department of Magnetic ResonanceScientific Institute “Stella Maris”PisaItaly
  7. 7.Department of RadiologyPolytechnic University of MarchesAnconaItaly

Personalised recommendations