European Radiology

, Volume 18, Issue 6, pp 1102–1113 | Cite as

Functional BOLD MRI: comparison of different field strengths in a motor task

  • T. MeindlEmail author
  • C. Born
  • S. Britsch
  • M. Reiser
  • S. Schoenberg


The purpose was to evaluate the benefit of an increased field strength for functional magnetic resonance imaging in a motor task. Six right-handed volunteers were scanned at 1.5 T and 3.0 T using a motor task. Each experiment consisted of two runs with four activation blocks, each with right- and left-hand tapping. Analysis was done using BrainVoyagerQX®. Differences between both field strengths concerning signal to noise (SNR), blood oxygen level-dependent (BOLD) signal change, functional sensitivity and BOLD contrast to noise (CNR) were tested using a paired t test. Delineation of activations and artifacts were graded by two independent readers. Results were further validated by means of a phantom study. The sensorimotor and premotor cortex, the supplementary motor area, subcortical and cerebellar structures were activated at each field strength. Additional activations of the right premotor cortex and right superior temporal gyrus were found at 3.0 T. Signal-to-noise, percentage of BOLD signal change, BOLD CNR and functional sensitivity improved at 3.0 T by a factor of up to 2.4. Functional imaging at 3.0 T results in detection of additional activated areas, increased SNR, BOLD signal change, functional sensitivity and BOLD CNR.


Functional MRI Motor task Field strength 


  1. 1.
    Ogawa S, Lee T, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci 87:9868–9872. DOI  10.1073/pnas.87.24.9868 PubMedCrossRefGoogle Scholar
  2. 2.
    Ogawa S, Lee T, Nayak AS, Glynn PG (1990) Oxygenation–sensitive contrast in magnetic resonance images of rodent brain at high magnetic fields. Magn Reson Med 14:68–78PubMedCrossRefGoogle Scholar
  3. 3.
    Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci 89:5951–5955PubMedCrossRefGoogle Scholar
  4. 4.
    Friston KJ, Holmes AP, Worsley KJ (1999) How many subjects constitute a study? Neuro Image 10:1–5. DOI  10.1006/nimg.1999.0439 PubMedGoogle Scholar
  5. 5.
    Gati JS, Menon RS, Ugurbil K, Rutt BK (1997) Experimental determination of the bold field strength dependence in vessels and tissue. Magn Reson Med 38:296–302PubMedCrossRefGoogle Scholar
  6. 6.
    Krüger G, Kasturp A, Glover GH (2001) Neuroimaging at 1.5 T and 3.0 T: comparison of oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 45:595–604PubMedCrossRefGoogle Scholar
  7. 7.
    Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, Ellermann JM, Ugurbil K (1993) Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging A comparison of signal characteristics with a biophysical model. Biophys J 64:803–812PubMedCrossRefGoogle Scholar
  8. 8.
    Hoenig K, Kuhl CK, Scheef L (2005) Functional 3.0-T MR assessment of higher cognitive function: are there advantages over 1.5-T imaging. Radiology 234:860–868. DOI  10.1148/radiol.2343031565 PubMedCrossRefGoogle Scholar
  9. 9.
    Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113PubMedCrossRefGoogle Scholar
  10. 10.
    Talairach J, Tournoux P (1988) Coplanar stereotaxic atlas of the human brain. Thieme, New York, NYGoogle Scholar
  11. 11.
    Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO (2007) Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 26:375–385. DOI  10.1002/jmri.20969 PubMedCrossRefGoogle Scholar
  12. 12.
    Dhamala M, Pagnoni G, Wiesenfeld K, Zink CF, Martin M, Berns GS (2003) Neural correlates of the complexitiy of rhythmic finger tapping. Neuro Image 20:918–926. DOI  10.1016/S1053-8119(03)00304-5 PubMedGoogle Scholar
  13. 13.
    Rao SM, Binder J, Bandettini PA, Hammeke TA, Yetkin FZ, Jesmanowicz A, Lisk LM, Morris GL, Mueller WM, Estkowski LD (1993) Functional magnetic resonance imaging of complex human movements. Neurology 43:2311–2318PubMedGoogle Scholar
  14. 14.
    Wassermann EM, Pascual-Leone A, Hallett M (1994) Cortical motor representation of the ipsilateral hand and arm. Exp Brain Res 100:121–132PubMedCrossRefGoogle Scholar
  15. 15.
    Ziemann U, Ishii K, Borgheresi A, Yaseen Z, Battaglia F, Hallett M, Cincotta M, Wassermann EM (1999) Dissociation of the pathways mediating ipsilateral and contralateral motor-evoked potentials in human hand and arm muscles. J Physiol 518:895–906PubMedCrossRefGoogle Scholar
  16. 16.
    Samuel M, Williams S, Leigh P, Simmons A, Chakraborti S, Andrew C, Friston K, Goldstein L, Brooks DJ (1998) Exploring the temporal nature of hemodynamic responses of cortical motor areas using functional MRI. Neurology 51:1567–1575PubMedGoogle Scholar
  17. 17.
    Gerloff C, Richard J, Hadley J, Schulman AE, Honda M, Hallett M (1998) Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements. Brain 121:1513–1531PubMedCrossRefGoogle Scholar
  18. 18.
    Mink JW, Thach J (1991) Basal ganglia motor control. Late pallidal timing relative to movement onset and inconsistent pallidal coding of movement parameters. J Neurophysiol 65:301–329PubMedGoogle Scholar
  19. 19.
    Lehericy S, Bardinet E, Tremblay L, vandeMoortele P, Pochon J, Dormont D, Kim D, Yelnik J, Ugurbil K (2006) Motor control in basal ganglia circuits using fMRI and brain atlas approaches. Cerebral Cortex 16:149–161. DOI  10.1093/cercor/bhi089 PubMedCrossRefGoogle Scholar
  20. 20.
    Scholz VH, Flaherty A, Kraft E, Keltner JR, Kwong KK, Chen YI, Rosen BR, Jenkins BG (2000) Laterality, somatotopy and reproducibility of the basal ganglia and motor cortex during motor tasks. Brain Research 879:204–215PubMedCrossRefGoogle Scholar
  21. 21.
    Ramnani N, Toni I, Passingham RE, Haggard P (2001) The cerebellum and parietal cortex play a specific role in coordination: a PET study. Neuro Image 14:899–911. DOI  10.1006/nimg.2001.0885 PubMedGoogle Scholar
  22. 22.
    Ramnani N, Passingham R (2001) Changes in human brain during rhythm learning. J Cogn Neurosci 13:952–966. DOI  10.1162/089892901753165863 PubMedCrossRefGoogle Scholar
  23. 23.
    Turner RS, Grafton S, Votaw JR, Delong MR, Hoffman JM (1998) Motor subcircuits mediating the control of movement velocity: a PET study. J Neurophysiol 80:2162–2176PubMedGoogle Scholar
  24. 24.
    Haaland KY, Elsinger C, Mayer AR, Durgerian S, Rao SM (2004) Motor Sequence Complexity and Performing Hand Produce Differential Patterns of Hemispheric Lateralization. J Cogn Neuro Science 16:621–636. DOI  10.1162/089892904323057344 CrossRefGoogle Scholar
  25. 25.
    Redpath TW (1998) Signal-to-noise ratio in MRI. Br J Radiol 71:704–707PubMedGoogle Scholar
  26. 26.
    Yang Y, Wen H, Mattay VS, Balaban RS, Frank JA, Duyn JH (1999) Comparison of 3D BOLD functional MRI with spiral acquisition at 1.5 T and 4.0 T. Neuro Image 9:446–451. DOI  10.1006/nimg.1998.0422 PubMedGoogle Scholar
  27. 27.
    Scarabino T, Giannatempo GM, Popolizio T, Tosetti M, d’Alesio V, Esposito F, Di Salle F, Di Costanzo A, Bertolino A, Maggialetti A, Salvolini U (2007) 3.0-T functional brain imaging: a 5-year experience. Radiol Med (Torino) 112:97–112. DOI  10.1007/s11547-007-0124-x CrossRefGoogle Scholar
  28. 28.
    Field AS, Yen Y, Burdette JH, Elster AD (2000) False cerebral activation on BOLD functional MR images: study of low-amplitude motion weakly correlated to the stimulus. Am J Neuroradiol 21:1388–1396PubMedGoogle Scholar
  29. 29.
    Lund TE, Norgaard M, Rostrup E, Rowe JB, Paulson OB (2005) Motion or activity: their role in intra- and inter-subject variation in fMRI. Neuro Image 26:960–964. DOI  10.1016/j.neuroimage.2005.02.021 PubMedGoogle Scholar
  30. 30.
    Wansapura JP, Holland S, Dunn RS, Ball WS (1999) NMR relaxation times in the human brain at 3.0 T. Magn Reson Med 9:637–648Google Scholar
  31. 31.
    Weiger M, Pruessmann KP, Osterbauer R, Bornert P, Boesinger P, Jezzard J (2002) Sensitivity-encoded single-shot spiral imaging for reduced susceptibility artifacts in BOLD fMRI. Magn Reson Med 48:860–866PubMedCrossRefGoogle Scholar
  32. 32.
    Cusack R, Brett M, Osswald K (2003) An evaluation of the use of magnetic field maps to undistort echo-planar images. Neuro Image 18:127–142. DOI  10.1006/nimg.2002.1281 PubMedGoogle Scholar
  33. 33.
    Poser BA, Versluis M, Hoogduin JM, Norris DG (2006) BOLD contrast sensitivity enhancement and artifact reduction with multiecho EPI: parallel-acquired inhomogenity-desensitized fMRI. Magn Reson Med 55:1227–1235PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2008

Authors and Affiliations

  • T. Meindl
    • 1
    • 2
    Email author
  • C. Born
    • 1
  • S. Britsch
    • 1
  • M. Reiser
    • 1
  • S. Schoenberg
    • 1
  1. 1.Institute for Clinical RadiologyUniversity MunichMunichGermany
  2. 2.University Hospitals—InnenstadtLudwig-Maximilians-University of MunichMunichGermany

Personalised recommendations