European Radiology

, Volume 18, Issue 5, pp 920–924 | Cite as

Separate visualization of endolymphatic space, perilymphatic space and bone by a single pulse sequence; 3D-inversion recovery imaging utilizing real reconstruction after intratympanic Gd-DTPA administration at 3 Tesla

  • Shinji NaganawaEmail author
  • Hiroko Satake
  • Minako Kawamura
  • Hiroshi Fukatsu
  • Michihiko Sone
  • Tsutomu Nakashima
Head and Neck


Twenty-four hours after intratympanic administration of gadolinium contrast material (Gd), the Gd was distributed mainly in the perilymphatic space. Three-dimensional FLAIR can differentiate endolymphatic space from perilymphatic space, but not from surrounding bone. The purpose of this study was to evaluate whether 3D inversion-recovery turbo spin echo (3D-IR TSE) with real reconstruction could separate the signals of perilymphatic space (positive value), endolymphatic space (negative value) and bone (near zero) by setting the inversion time between the null point of Gd-containing perilymph fluid and that of the endolymph fluid without Gd. Thirteen patients with clinically suspected endolymphatic hydrops underwent intratympanic Gd injection and were scanned at 3 T. A 3D FLAIR and 3D-IR TSE with real reconstruction were obtained. In all patients, low signal of endolymphatic space in the labyrinth on 3D FLAIR was observed in the anatomically appropriate position, and it showed negative signal on 3D-IR TSE. The low signal area of surrounding bone on 3D FLAIR showed near zero signal on 3D-IR TSE. Gd-containing perilymphatic space showed high signal on 3D-IR TSE. In conclusion, by optimizing the inversion time, endolymphatic space, perilymphatic space and surrounding bone can be separately visualized on a single image using a 3D-IR TSE with real reconstruction.


Inner ear Endolymphatic hydrops Magnetic resonance Meniere’s disease 


  1. 1.
    Zou J, Pyykko I, Bjelke B, Dastidar P, Toppila E (2005) Communication between the perilymphatic scalae and spiral ligament visualized by in vivo MRI. Audiol Neurootol 10(3):145–152PubMedCrossRefGoogle Scholar
  2. 2.
    Nakashima T, Naganawa S, Sugiura M, Teranishi M, Sone M, Hayashi H, Nakata S, Katayama N, Ishida IM (2007) Visualization of endolymphatic hydrops in patients with Meniere’s disease. Laryngoscope 117(3):415–420PubMedCrossRefGoogle Scholar
  3. 3.
    Park HW, Cho MH, Cho ZH (1986) Real-value representation in inversion-recovery NMR imaging by use of a phase-correction method. Magn Reson Med 3(1):15–23PubMedCrossRefGoogle Scholar
  4. 4.
    Bandai H, Tsunoda A, Mitsuoka H, Arai H, Sato K, Makita J (2002) Fast inversion recovery magnetic resonance imaging with the real reconstruction method: a diagnostic tool for cerebral gliomas. Neurol Med Chir (Tokyo) 42(1):5–10CrossRefGoogle Scholar
  5. 5.
    Naganawa S, Koshikawa T, Nakamura T, Fukatsu H, Ishigaki T, Aoki I (2003) High-resolution T1-weighted 3D real IR imaging of the temporal bone using triple-dose contrast material. Eur Radiol 13(12):2650–2658PubMedCrossRefGoogle Scholar
  6. 6.
    Schuknecht HF, Suzuka Y, Zimmermann C (1990) Delayed endolymphatic hydrops and its relationship to Meniere’s disease. Ann Otol Rhinol Laryngol 99(11):843–853PubMedGoogle Scholar
  7. 7.
    Fujino K, Naito Y, Endo T, Kanemaru S, Hiraumi H, Tsuji J, Ito J (2007) Clinical characteristics of delayed endolymphatic hydrops: long-term results of hearing and efficacy of hyperbaric oxygenation therapy. Acta Otolaryngol Suppl 1557:22–25PubMedCrossRefGoogle Scholar
  8. 8.
    Schwaber MK (2002) Transtympanic gentamicin perfusion for the treatment of Meniere’s disease. Otolaryngol Clin North Am 35(2):287–295PubMedCrossRefGoogle Scholar
  9. 9.
    Haynes DS, O’Malley M, Cohen S, Watford K, Labadie RF (2007) Intratympanic dexamethasone for sudden sensorineural hearing loss after failure of systemic therapy. Laryngoscope 117(1):3–15PubMedCrossRefGoogle Scholar
  10. 10.
    Ahn JH, Han MW, Kim JH, Chung JW, Yoon TH (2007) Therapeutic effectiveness over time of intratympanic dexamethasone as salvage treatment of sudden deafness. Acta Otolaryngol. 2007 Aug 22; 1-4 [Epub ahead of print] DOI  10.1080/00016480701477602
  11. 11.
    De Stefano A, Dispenza F, De Donato G, Caruso A, Taibah A, Sanna M (2007) Intratympanic gentamicin: a 1-day protocol treatment for unilateral Meniere’s disease. Am J Otolaryngol 28(5):289–293PubMedCrossRefGoogle Scholar
  12. 12.
    Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47(6):1202–1210PubMedCrossRefGoogle Scholar
  13. 13.
    Salt AN, Henson MM, Gewalt SL, Keating AW, DeMott JE, Henson OW, Jr (1995) Detection and quantification of endolymphatic hydrops in the guinea pig cochlea by magnetic resonance microscopy. Hear Res 88(1-2):79–86PubMedCrossRefGoogle Scholar
  14. 14.
    Shinomori Y, Spack DS, Jones DD, Kimura RS (2001) Volumetric and dimensional analysis of the guinea pig inner ear. Ann Otol Rhinol Laryngol 110(1):91–98PubMedGoogle Scholar
  15. 15.
    Buckingham RA, Valvassori GE (2001) Inner ear fluid volumes and the resolving power of magnetic resonance imaging: can it differentiate endolymphatic structures? Ann Otol Rhinol Laryngol 110(2):113–117PubMedGoogle Scholar
  16. 16.
    Niyazov DM, Andrews JC, Strelioff D, Sinha S, Lufkin R (2001) Diagnosis of endolymphatic hydrops in vivo with magnetic resonance imaging. Otol Neurotol 22(6):813–817PubMedCrossRefGoogle Scholar
  17. 17.
    Koizuka I, Seo Y, Murakami M, Seo R, Kato I (1997) Micro-magnetic resonance imaging of the inner ear in the guinea pig. NMR Biomed 10(1):31–34PubMedCrossRefGoogle Scholar
  18. 18.
    Koizuka I, Seo R, Kubo T, Matsunaga T, Murakami M, Seo Y, Watari H (1995) High-resolution MRI of the human cochlea. Acta Otolaryngol Suppl 520(Pt 2):256–257PubMedCrossRefGoogle Scholar
  19. 19.
    Koizuka I, Seo R, Sano M, Matsunaga T, Murakami M, Seo Y, Watari H (1991) High-resolution magnetic resonance imaging of the human temporal bone. ORL J Otorhinolaryngol Relat Spec 53(6):357–361PubMedGoogle Scholar
  20. 20.
    Ito T, Naganawa S, Fukatsu H, Ishiguchi T, Ishigaki T, Kobayashi M, Kobayashi K, Ichinose N, Miyazaki M, Kassai Y (1999) High-resolution MR images of inner ear internal anatomy using a local gradient coil at 1.5 Tesla: correlation with histological specimen. Radiat Med 17(5):343–347PubMedGoogle Scholar
  21. 21.
    Naganawa S, Koshikawa T, Fukatsu H, Ishigaki T, Aoki I, Ninomiya A (2002) Fast recovery 3D fast spin-echo MR imaging of the inner ear at 3 T. AJNR Am J Neuroradiol 23(2):299–302PubMedGoogle Scholar
  22. 22.
    Naganawa S, Komada T, Fukatsu H, Ishigaki T, Takizawa O (2006) Observation of contrast enhancement in the cochlear fluid space of healthy subjects using a 3D-FLAIR sequence at 3 Tesla. Eur Radiol 16(3):733–737PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2008

Authors and Affiliations

  • Shinji Naganawa
    • 1
    Email author
  • Hiroko Satake
    • 1
  • Minako Kawamura
    • 1
  • Hiroshi Fukatsu
    • 1
  • Michihiko Sone
    • 2
  • Tsutomu Nakashima
    • 2
  1. 1.Department of RadiologyNagoya University Graduate School of MedicineNagoyaJapan
  2. 2.OtorhinolaryngologyNagoya University Graduate School of MedicineNagoyaJapan

Personalised recommendations