European Radiology

, Volume 18, Issue 5, pp 1058–1064 | Cite as

Diffusion-weighted MRI in cervical cancer

  • Patrick Z. McVeigh
  • Aejaz M. Syed
  • Michael Milosevic
  • Anthony Fyles
  • Masoom A. HaiderEmail author


The purpose was to investigate the potential value of apparent diffusion coefficient (ADC) measurement with MRI in the assessment of cervix cancer. Diffusion-weighted MRI was performed in 47 patients with cervical carcinoma undergoing chemoradiation therapy and 26 normal controls on a 1.5-T system with a b-value of 600 s/mm2. FIGO stage, tumor volume, nodal status, interstitial fluid pressure (IFP) and oxygen measurements were recorded. Response was defined as no visible tumor 3–6 months following completion of therapy. The average median ADC (mADC) of cervical carcinomas (1.09±0.20×10−3 mm2/s) was significantly lower than normal cervix (2.09±0.46×10−3 mm2/s) (P<0.001). There was no correlation between mADC, nodal status, tumor volume, IFP or oxygen measurements. mADC was significantly lower in FIGO stages T1b/T2a (0.986 × 10−3 mm2/s) compared to T2b (1.21×10−3 mm2/s) and T3/T4 (1.10×10−3 mm2/s) (P<0.001). In patients with squamous carcinomas the 90th percentile of ADC values was lower in responders than non-responders (P<0.05). Median ADC in cervix carcinoma is significantly lower compared to normal cervix. ADC may have predictive value in squamous tumors, but further long-term study will determine the ultimate clinical utility.


Apparent diffusion coefficient Magnetic resonance Cervical cancer Cervix Uterus 



This research has been supported by a grant from the National Cancer Institute of Canada and funds from The Terry Fox Run.


  1. 1.
    Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407PubMedGoogle Scholar
  2. 2.
    Sorensen AG, Wu O, Copen WA et al (1999) Human acute cerebral ischemia: detection of changes in water diffusion anisotropy by using MR imaging. Radiology 212:785–792PubMedGoogle Scholar
  3. 3.
    Koyama T, Togashi K (2007) Functional MR imaging of the female pelvis. J Magn Reson Imaging 25:1101–1112PubMedCrossRefGoogle Scholar
  4. 4.
    Koh DM, Collins DJ (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 188:1622–1635PubMedCrossRefGoogle Scholar
  5. 5.
    Le Bihan D, Poupon C, Amadon A, Lethimonnier F (2006) Artifacts and pitfalls in diffusion MRI. J Magn Reson Imaging 24:478–488PubMedCrossRefGoogle Scholar
  6. 6.
    Hein PA, Eskey CJ, Dunn JF, Hug EB (2004) Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. AJNR Am J Neuroradiol 25:201–209PubMedGoogle Scholar
  7. 7.
    Lyng H, Haraldseth O, Rofstad EK (2000) Measurement of cell density and necrotic fraction in human melanoma xenografts by diffusion weighted magnetic resonance imaging. Magn Reson Med 43:828–836PubMedCrossRefGoogle Scholar
  8. 8.
    Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505PubMedGoogle Scholar
  9. 9.
    Hockel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56:4509–4515PubMedGoogle Scholar
  10. 10.
    Fyles AW, Milosevic M, Wong R et al (1998) Oxygenation predicts radiation response and survival in patients with cervix cancer. Radiother Oncol 48:149–156PubMedCrossRefGoogle Scholar
  11. 11.
    Milosevic M, Fyles A, Hedley D et al (2001) Interstitial fluid pressure predicts survival in patients with cervix cancer independent of clinical prognostic factors and tumor oxygen measurements. Cancer Res 61:6400–6405PubMedGoogle Scholar
  12. 12.
    Fyles A, Milosevic M, Pintilie M et al (2006) Long-term performance of interstial fluid pressure and hypoxia as prognostic factors in cervix cancer. Radiother Oncol 80:132–137PubMedCrossRefGoogle Scholar
  13. 13.
    Dunn JF, Ding S, O’Hara JA et al (1995) The apparent diffusion constant measured by MRI correlates with pO2 in a RIF-1 tumor. Magn Reson Med 34:515–519PubMedCrossRefGoogle Scholar
  14. 14.
    Helmer KG, Han S, Sotak CH (1998) On the correlation between the water diffusion coefficient and oxygen tension in RIF-1 tumors. NMR Biomed 11:120–130PubMedCrossRefGoogle Scholar
  15. 15.
    Yamada I, Aung W, Himeno Y, Nakagawa T, Shibuya H (1999) Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology 210:617–623PubMedGoogle Scholar
  16. 16.
    Taouli B, Vilgrain V, Dumont E, Daire JL, Fan B, Menu Y (2003) Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: prospective study in 66 patients. Radiology 226:71–78PubMedCrossRefGoogle Scholar
  17. 17.
    Koh DM, Scurr E, Collins DJ et al (2006) Colorectal hepatic metastases: quantitative measurements using single-shot echo-planar diffusion-weighted MR imaging. Eur Radiol 16:1898–1905PubMedCrossRefGoogle Scholar
  18. 18.
    Baur A, Huber A, Arbogast S et al (2001) Diffusion-weighted imaging of tumor recurrencies and posttherapeutical soft-tissue changes in humans. Eur Radiol 11:828–833PubMedCrossRefGoogle Scholar
  19. 19.
    Fujii S, Matsusue E, Kanasaki Y et al (2007) Detection of peritoneal dissemination in gynecological malignancy: evaluation by diffusion-weighted MR imaging. Eur Radiol Aug 14 [Epub ahead of print] DOI  10.1007/s00330-007-0732-9
  20. 20.
    Baysal T, Bulut T, Gokirmak M, Kalkan S, Dusak A, Dogan M (2004) Diffusion-weighted MR imaging of pleural fluid: differentiation of transudative vs exudative pleural effusions. Eur Radiol 14:890–896PubMedCrossRefGoogle Scholar
  21. 21.
    Dzik-Jurasz A, Domenig C, George M et al (2002) Diffusion MRI for prediction of response of rectal cancer to chemoradiation. Lancet 360:307–308PubMedCrossRefGoogle Scholar
  22. 22.
    DeVries AF, Kremser C, Hein PA et al (2003) Tumor microcirculation and diffusion predict therapy outcome for primary rectal carcinoma. Int J Radiat Oncol Biol Phys 56:958–965PubMedCrossRefGoogle Scholar
  23. 23.
    Koh DM, Scurr E, Collins D et al (2007) Predicting response of colorectal hepatic metastasis: value of pretreatment apparent diffusion coefficients. AJR Am J Roentgenol 188:1001–1008PubMedCrossRefGoogle Scholar
  24. 24.
    Sumi M, Sakihama N, Sumi T et al (2003) Discrimination of metastatic cervical lymph nodes with diffusion-weighted MR imaging in patients with head and neck cancer. AJNR Am J Neuroradiol 24:1627–1634PubMedGoogle Scholar
  25. 25.
    Abdel Razek AA, Soliman NY, Elkhamary S, Alsharaway MK, Tawfik A (2006) Role of diffusion-weighted MR imaging in cervical lymphadenopathy. Eur Radiol 16:1468–1477PubMedCrossRefGoogle Scholar
  26. 26.
    Tozer DJ, Jager HR, Danchaivijitr N et al (2007) Apparent diffusion coefficient histograms may predict low-grade glioma subtype. NMR Biomed 20:49–57PubMedCrossRefGoogle Scholar
  27. 27.
    Naganawa S, Sato C, Kumada H, Ishigaki T, Miura S, Takizawa O (2005) Apparent diffusion coefficient in cervical cancer of the uterus: comparison with the normal uterine cervix. Eur Radiol 15:71–78PubMedCrossRefGoogle Scholar
  28. 28.
    Milosevic MF, Fyles AW, Wong R et al (1998) Interstitial fluid pressure in cervical carcinoma: within tumor heterogeneity, and relation to oxygen tension. Cancer 82:2418–2426PubMedCrossRefGoogle Scholar
  29. 29.
    Sugahara T, Korogi Y, Kochi M et al (1999) Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 9:53–60PubMedCrossRefGoogle Scholar
  30. 30.
    Kono K, Inoue Y, Nakayama K et al (2001) The role of diffusion-weighted imaging in patients with brain tumors. AJNR Am J Neuroradiol 22:1081–1088PubMedGoogle Scholar
  31. 31.
    Takahara T, Imai Y, Yamashita T, Yasuda S, Nasu S, Van Cauteren M (2004) Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 22:275–282PubMedGoogle Scholar
  32. 32.
    Bilgili Y, Unal B (2004) Effect of region of interest on interobserver variance in apparent diffusion coefficient measures. AJNR Am J Neuroradiol 25:108–111PubMedGoogle Scholar
  33. 33.
    Mardor Y, Roth Y, Ochershvilli A et al (2004) Pretreatment prediction of brain tumors’ response to radiation therapy using high b-value diffusion-weighted MRI. Neoplasia 6:136–142PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2007

Authors and Affiliations

  • Patrick Z. McVeigh
    • 1
  • Aejaz M. Syed
    • 2
  • Michael Milosevic
    • 3
  • Anthony Fyles
    • 3
  • Masoom A. Haider
    • 1
    Email author
  1. 1.Department of Medical ImagingUniversity of Toronto, University Health Network, Princess Margaret HospitalTorontoCanada
  2. 2.Department of RadiologyThe Queen Elizabeth HospitalKing’s LynnUK
  3. 3.Department of Radiation OncologyUniversity Health Network, Princess Margaret HospitalTorontoCanada

Personalised recommendations