European Radiology

, Volume 18, Issue 2, pp 365–375

MR classification of renal masses with pathologic correlation

  • Ivan Pedrosa
  • Mary T. Chou
  • Long Ngo
  • Ronaldo H. Baroni
  • Elizabeth M. Genega
  • Laura Galaburda
  • William C. DeWolf
  • Neil M. Rofsky
Urogenital

Abstract

To perform a feature analysis of malignant renal tumors evaluated with magnetic resonance (MR) imaging and to investigate the correlation between MR imaging features and histopathological findings. MR examinations in 79 malignant renal masses were retrospectively evaluated, and a feature analysis was performed. Each renal mass was assigned to one of eight categories from a proposed MRI classification system. The sensitivity and specificity of the MRI classification system to predict the histologic subtype and nuclear grade was calculated. Subvoxel fat on chemical shift imaging correlated to clear cell type (p < 0.05); sensitivity = 42%, specificity = 100%. Large size, intratumoral necrosis, retroperitoneal vascular collaterals, and renal vein thrombosis predicted high-grade clear cell type (p < 0.05). Small size, peripheral location, low intratumoral SI on T2-weighted images, and low-level enhancement were associated with low-grade papillary carcinomas (p < 0.05). The sensitivity and specificity of the MRI classification system for diagnosing low grade clear cell, high-grade clear cell, all clear cell, all papillary, and transitional carcinomas were 50% and 94%, 93% and 75%, 92% and 83%, 80% and 94%, and 100% and 99%, respectively. The MRI feature analysis and proposed classification system help predict the histological type and nuclear grade of renal masses.

Keywords

Kidney neoplasms Carcinoma Renal cell Magnetic resonance imaging Multivariate analysis 

References

  1. 1.
    Jayson M, Sanders H (1998) Increased incidence of serendipitously discovered renal cell carcinoma. Urology 51:203–205PubMedCrossRefGoogle Scholar
  2. 2.
    Volpe A, Panzarella T, Rendon RA, Haider MA, Kondylis FI, Jewett MA (2004) The natural history of incidentally detected small renal masses. Cancer 100:738–745PubMedCrossRefGoogle Scholar
  3. 3.
    Lam JS, Shvarts O, Leppert JT, Figlin RA, Belldegrun AS (2005) Renal cell carcinoma 2005: new frontiers in staging, prognostication and targeted molecular therapy. J Urol 173:1853–1862PubMedCrossRefGoogle Scholar
  4. 4.
    Stadler WM (2005) Targeted agents for the treatment of advanced renal cell carcinoma. Cancer 104:2323–2333PubMedCrossRefGoogle Scholar
  5. 5.
    Kaelin WG Jr (2004) The von Hippel-Lindau tumor suppressor gene and kidney cancer. Clin Cancer Res 10:6290S–6295SPubMedCrossRefGoogle Scholar
  6. 6.
    Hecht EM, Israel GM, Krinsky GA et al (2004) Renal masses: quantitative analysis of enhancement with signal intensity measurements versus qualitative analysis of enhancement with image subtraction for diagnosing malignancy at MR imaging. Radiology 232:373–378PubMedCrossRefGoogle Scholar
  7. 7.
    Rofsky NM, Bosniak MA (1997) MR imaging in the evaluation of small (< or =3.0 cm) renal masses. Magn Reson Imaging Clin N Am 5:67–81PubMedGoogle Scholar
  8. 8.
    Rominger MB, Kenney PJ, Morgan DE, Bernreuter WK, Listinsky JJ (1992) Gadolinium-enhanced MR imaging of renal masses. Radiographics 12:1097–1116; discussion 1117–1098PubMedGoogle Scholar
  9. 9.
    Semelka RC, Hricak H, Stevens SK, Finegold R, Tomei E, Carroll PR (1991) Combined gadolinium-enhanced and fat-saturation MR imaging of renal masses. Radiology 178:803–809PubMedGoogle Scholar
  10. 10.
    Semelka RC, Shoenut JP, Magro CM, Kroeker MA, MacMahon R, Greenberg HM (1993) Renal cancer staging: comparison of contrast-enhanced CT and gadolinium-enhanced fat-suppressed spin-echo and gradient-echo MR imaging. J Magn Reson Imaging 3:597–602PubMedCrossRefGoogle Scholar
  11. 11.
    Ho VB, Allen SF, Hood MN, Choyke PL (2002) Renal masses: quantitative assessment of enhancement with dynamic MR imaging. Radiology 224:695–700PubMedCrossRefGoogle Scholar
  12. 12.
    Bosniak MA (1986) The current radiological approach to renal cysts. Radiology 158:1–10PubMedGoogle Scholar
  13. 13.
    Bosniak MA, Megibow AJ, Hulnick DH, Horii S, Raghavendra BN (1988) CT diagnosis of renal angiomyolipoma: the importance of detecting small amounts of fat. AJR Am J Roentgenol 151:497–501PubMedGoogle Scholar
  14. 14.
    Eilenberg SS, Lee JK, Brown J, Mirowitz SA, Tartar VM (1990) Renal masses: evaluation with gradient-echo Gd-DTPA-enhanced dynamic MR imaging. Radiology 176:333–338PubMedGoogle Scholar
  15. 15.
    Israel GM, Hindman N, Bosniak MA (2004) Evaluation of cystic renal masses: comparison of CT and MR imaging by using the Bosniak classification system. Radiology 231:365–371PubMedCrossRefGoogle Scholar
  16. 16.
    Semelka RC, Shoenut JP, Kroeker MA, MacMahon RG, Greenberg HM (1992) Renal lesions: controlled comparison between CT and 1.5-T MR imaging with nonenhanced and gadolinium-enhanced fat-suppressed spin-echo and breath-hold FLASH techniques [see comments]. Radiology 182:425–430PubMedGoogle Scholar
  17. 17.
    Yoshimitsu K, Honda H, Kuroiwa T et al (1999) MR detection of cytoplasmic fat in clear cell renal cell carcinoma utilizing chemical shift gradient-echo imaging. J Magn Reson Imaging 9:579–585PubMedCrossRefGoogle Scholar
  18. 18.
    Roy C, Sauer B, Lindner V, Lang H, Saussine C, Jacqmin D (2007) MR Imaging of papillary renal neoplasms: potential application for characterization of small renal masses. Eur Radiol 17:193–200PubMedCrossRefGoogle Scholar
  19. 19.
    Yoshimitsu K, Irie H, Tajima T et al (2004) MR imaging of renal cell carcinoma: its role in determining cell type. Radiat Med 22:371–376PubMedGoogle Scholar
  20. 20.
    Earls J, Rofsky NM, DeCorato DR, Krinsky GA, Weinreb JC (1997) Hepatic arterial-phase dynamic gadolinium-enhanced MR imaging: optimization with a test examination and a power injector. Radiology 202:268–273PubMedGoogle Scholar
  21. 21.
    Israel GM, Hindman N, Hecht E, Krinsky G (2005) The use of opposed-phase chemical shift MRI in the diagnosis of renal angiomyolipomas. AJR Am J Roentgenol 184:1868–1872PubMedGoogle Scholar
  22. 22.
    Zhang J, Pedrosa I, Rofsky NM (2003) MR techniques for renal imaging. Radiol Clin North Am 41:877–907PubMedCrossRefGoogle Scholar
  23. 23.
    Agresti A, Coull B (1998) Approximate is better than “exact” for interval estimation of binomial proportions. American Statistician 119–126Google Scholar
  24. 24.
    Chawla SN, Crispen PL, Hanlon AL, Greenberg RE, Chen DY, Uzzo RG (2006) The natural history of observed enhancing renal masses: meta-analysis and review of the world literature. J Urol 175:425–431PubMedCrossRefGoogle Scholar
  25. 25.
    Kouba E, Smith A, McRackan D, Wallen EM, Pruthi RS (2007) Watchful waiting for solid renal masses: insight into the natural history and results of delayed intervention. J Urol 177:466–470PubMedCrossRefGoogle Scholar
  26. 26.
    Guinan P, Frank W, Saffrin R, Rubenstein M (1994) Staging and survival of patients with renal cell carcinoma. Semin Surg Oncol 10:47–50PubMedCrossRefGoogle Scholar
  27. 27.
    Kuczyk M, Wegener G, Merseburger AS et al (2005) Impact of tumor size on the long-term survival of patients with early stage renal cell cancer. World J Urol 23:50–54PubMedCrossRefGoogle Scholar
  28. 28.
    Leibovich BC, Pantuck AJ, Bui MH et al (2003) Current staging of renal cell carcinoma. Urol Clin North Am 30:481–497, viiiPubMedCrossRefGoogle Scholar
  29. 29.
    Han KR, Janzen NK, McWhorter VC et al (2004) Cystic renal cell carcinoma: biology and clinical behavior. Urol Oncol 22:410–414PubMedGoogle Scholar
  30. 30.
    Mejean A, Hopirtean V, Bazin JP et al (2003) Prognostic factors for the survival of patients with papillary renal cell carcinoma: meaning of histological typing and multifocality. J Urol 170:764–767PubMedCrossRefGoogle Scholar
  31. 31.
    Herts BR, Coll DM, Novick AC et al (2002) Enhancement characteristics of papillary renal neoplasms revealed on triphasic helical CT of the kidneys. AJR Am J Roentgenol 178:367–372PubMedGoogle Scholar
  32. 32.
    Turner KJ, Moore JW, Jones A et al (2002) Expression of hypoxia-inducible factors in human renal cancer: relationship to angiogenesis and to the von Hippel-Lindau gene mutation. Cancer Res 62:2957–2961PubMedGoogle Scholar
  33. 33.
    Djordjevic G, Mozetic V, Mozetic DV et al (2007) Prognostic significance of vascular endothelial growth factor expression in clear cell renal cell carcinoma. Pathol Res Pract 203:99–106PubMedCrossRefGoogle Scholar
  34. 34.
    Cheville JC, Lohse CM, Zincke H, Weaver AL, Blute ML (2003) Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma. Am J Surg Pathol 27:612–624PubMedCrossRefGoogle Scholar
  35. 35.
    Semenza GL (2000) HIF-1 and human disease: one highly involved factor. Genes Dev 14:1983–1991PubMedGoogle Scholar
  36. 36.
    Outwater EK, Bhatia M, Siegelman ES, Burke MA, Mitchell DG (1997) Lipid in renal clear cell carcinoma: detection on opposed-phase gradient-echo MR images. Radiology 205:103–107PubMedGoogle Scholar
  37. 37.
    Storkel S, Eble JN, Adlakha K et al (1997) Classification of renal cell carcinoma: Workgroup No. 1. Union Internationale Contre le Cancer (UICC) and the American Joint Committee on Cancer (AJCC). Cancer 80:987–989PubMedCrossRefGoogle Scholar
  38. 38.
    Kim JK, Kim SH, Jang YJ et al (2006) Renal angiomyolipoma with minimal fat: differentiation from other neoplasms at double-echo chemical shift FLASH MR imaging. Radiology 239:174–180PubMedCrossRefGoogle Scholar
  39. 39.
    Milner J, McNeil B, Alioto J et al (2006) Fat poor renal angiomyolipoma: patient, computerized tomography and histological findings. J Urol 176:905–909PubMedCrossRefGoogle Scholar
  40. 40.
    Korobkin M, Lombardi TJ, Aisen AM et al (1995) Characterization of adrenal masses with chemical shift and gadolinium-enhanced MR imaging. Radiology 197:411–418PubMedGoogle Scholar
  41. 41.
    Mayo-Smith WW, Lee MJ, McNicholas MM, Hahn PF, Boland GW, Saini S (1995) Characterization of adrenal masses (<5 cm) by use of chemical shift MR imaging: observer performance versus quantitative measures. AJR Am J Roentgenol 165:91–95PubMedGoogle Scholar

Copyright information

© European Society of Radiology 2007

Authors and Affiliations

  • Ivan Pedrosa
    • 1
  • Mary T. Chou
    • 1
  • Long Ngo
    • 2
  • Ronaldo H. Baroni
    • 1
  • Elizabeth M. Genega
    • 3
  • Laura Galaburda
    • 3
  • William C. DeWolf
    • 4
  • Neil M. Rofsky
    • 1
  1. 1.Department of RadiologyBeth Israel Deaconess Medical CenterBostonUSA
  2. 2.Department of General Medicine and Primary CareBeth Israel Deaconess Medical CenterBostonUSA
  3. 3.Department of PathologyBeth Israel Deaconess Medical CenterBostonUSA
  4. 4.Division of Urology, Department of SurgeryBeth Israel Deaconess Medical CenterBostonUSA

Personalised recommendations