European Radiology

, Volume 18, Issue 2, pp 234–243 | Cite as

Non-invasive evaluation of coronary artery stent patency with retrospectively ECG-gated 64-slice CT angiography

  • Iacopo Carbone
  • Marco Francone
  • Emanuela Algeri
  • Antonino Granatelli
  • Alessandro Napoli
  • Miles A. Kirchin
  • Carlo Catalano
  • Roberto Passariello


The aim of our study has been to evaluate the ability of 64-slice computed tomographic angiography (CTA) to assess coronary artery stent patency, relative to selective coronary angiography (SCA). Fifty-five consecutive patients (age range 45–80 years) with 97 previously implanted coronary artery stents underwent 64-slice CTA. The 55 patients comprised 40 subjects (group A) who were referred for follow-up SCA at a mean interval of 9.6 months after stent positioning, and 15 subjects (group B) in whom SCA was clinically indicated. Stent evaluation was performed independently by two blinded readers in terms of image quality and presence of in-stent restenosis (ISR; lumen obstruction of ≥50%). SCA was performed in 41/55 patients; 14 patients refused to undergo SCA after the 64-slice CTA exam. A total of 88 stents in 74 segments were analyzed. Twenty-one of the 74 stented segments were of poor image quality and were not considered for further analysis. Sixty-four-slice CTA detected 12/16 ISR (sensitivity: 75%) and ruled out ISR in 32/37 cases (specificity: 86%). Sixty-four-slice CTA is a valuable modality for follow-up of coronary artery stent patency only in selected patients. Appropriate candidates for follow-up 64-slice CTA should be established based on stent diameter, stent material and type as well as HR and heart rhythm. However, given the number of non-assessable segments, further work would appear necessary before 64-slice CTA can be considered a suitable procedure for broad clinical application in the evaluation of coronary artery stent patency.


Coronary artery Stents Multi-slice computed tomography Coronary restenosis Coronary angiography 


  1. 1.
    Sousa JE, Serruys PW, Costa MA (2003) New frontiers in cardiology: drug-eluting stents: Part I Circulation 107:2274–2279PubMedCrossRefGoogle Scholar
  2. 2.
    Sousa JE, Serruys PW, Costa MA (2003) New frontiers in cardiology: drug-eluting stents: Part II. Circulation 107:2383–2389PubMedCrossRefGoogle Scholar
  3. 3.
    Gordon PC, Gibson CM, Cohen DJ, Carrozza JP, Kuntz RE, Baim DS (1993) Mechanisms of re-stenosis and redilation within coronary stents-quantitative angiographic assessment. J Am Coll Cardiol 21:1166–1174PubMedCrossRefGoogle Scholar
  4. 4.
    Antoniucci D, Valenti R, Santoro GM, et al (1998) Restenosis after coronary stenting in current clinical practice. Am Heart J 135:510–518PubMedCrossRefGoogle Scholar
  5. 5.
    Grech ED (2003) ABC of interventional cardiology: percutaneous coronary intervention. II: the procedure. BMJ 326:1137–1140PubMedCrossRefGoogle Scholar
  6. 6.
    De Bono D (1993) Complications of diagnostic cardiac catheterisation: results from 34,041 patients in the United Kingdom confidential enquiry into cardiac catheter complications. The Joint Audit Committee of the British Cardiac Society and Royal College of Physicians of London. Br Heart J 70:297–300PubMedCrossRefGoogle Scholar
  7. 7.
    Young N, Chi KK, Ajaka J, McKay L, O’Neill D, Wong KP (2002) Complications with outpatient angiography and interventional procedures. Cardiovasc Intervent Radiol 25:123–126PubMedCrossRefGoogle Scholar
  8. 8.
    Nieman K, Cademartiri F, Lemos PA, Raaijmakers R, Pattynama PM, de Feyter PJ (2002) Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation 106:2051–2054PubMedCrossRefGoogle Scholar
  9. 9.
    Mollet NR, Cademartiri F, Krestin GP, et al (2005) Improved diagnostic accuracy with 16-row multi-slice computed tomography coronary angiography. J Am Coll Cardiol 45:128–132PubMedCrossRefGoogle Scholar
  10. 10.
    Mollet NR, Cademartiri F, van Mieghem CA, et al (2005) High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 112:2318–2323PubMedCrossRefGoogle Scholar
  11. 11.
    Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA (2005) Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46:552-557PubMedCrossRefGoogle Scholar
  12. 12.
    Ehara M, Surmely JF, Kawai M, et al (2006) Diagnostic accuracy of 64-slice computed tomography for detecting angiographically significant coronary artery stenosis in an unselected consecutive patient population: comparison with conventional invasive angiography. Circ J 70:564–571PubMedCrossRefGoogle Scholar
  13. 13.
    Leber AW, Becker A, Knez A, et al (2006) Accuracy of 64-slice computed tomography to classify and quantify plaque volumes in the proximal coronary system: a comparative study using intravascular ultrasound. J Am Coll Cardiol 47:672–677PubMedCrossRefGoogle Scholar
  14. 14.
    Leschka S, Husmann L, Desbiolles LM, et al (2006) Optimal image reconstruction intervals for non-invasive coronary angiography with 64-slice CT. Eur Radiol 16:1964–1972PubMedCrossRefGoogle Scholar
  15. 15.
    Leschka S, Wildermuth S, Boehm T, et al (2006) Noninvasive coronary angiography with 64-section CT: effect of average heart rate and heart rate variability on image quality. Radiology 241:378–385PubMedCrossRefGoogle Scholar
  16. 16.
    Pugliese F, Mollet NR, Runza G, et al (2006) Diagnostic accuracy of non-invasive 64-slice CT coronary angiography in patients with stable angina pectoris. Eur Radiol 16:575–582PubMedCrossRefGoogle Scholar
  17. 17.
    Oncel D, Oncel G, Tastan A, Tamci B (2007) Detection of significant coronary artery stenosis with 64-section MDCT angiography. Eur J Radiol Feb 13; [Epub ahead of print]Google Scholar
  18. 18.
    Scheffel H, Alkadhi H, Plass A, et al (2006) Accuracy of dual-source CT coronary angiography: First experience in a high pre-test probability population without heart rate control. Eur Radiol 16:2739–2747PubMedCrossRefGoogle Scholar
  19. 19.
    Johnson TR, Nikolaou K, Wintersperger BJ, et al (2006) Dual-source CT cardiac imaging: initial experience. Eur Radiol 16:1409–1415PubMedCrossRefGoogle Scholar
  20. 20.
    Flohr TG, McCollough CH, Bruder H, et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol. 2006; 16:256–268. Erratum in: Eur Radiol 16:1405PubMedCrossRefGoogle Scholar
  21. 21.
    Schuijf JD, Bax JJ, Jukema JW, et al (2004) Feasibility of assessment of coronary stent patency using 16-slice computed tomography. Am J Cardiol 94:427–430PubMedCrossRefGoogle Scholar
  22. 22.
    Cademartiri F, Mollet N, Lemos PA, et al (2005) Usefulness of Multislice Computed Tomographic Coronary Angiography to assess in-stent restenosis. Am J Cardiol 96:799–802PubMedCrossRefGoogle Scholar
  23. 23.
    Seifarth H, Raupach R, Schaller S, et al (2005) Assessment of coronary artery stents using 16-slice MSCT angiography: evaluation of a dedicated reconstruction kernel and a noise reduction filter. Eur Radiol 15:721–726PubMedCrossRefGoogle Scholar
  24. 24.
    Mahnken AH, Muhlenbruch G, Gunther RW, Wildberger JE (2007) Cardiac CT: coronary arteries and beyond. Eur Radiol 17(4):994–1008PubMedCrossRefGoogle Scholar
  25. 25.
    Chabbert V, Carrie D, Bennaceur M, et al (2007) Evaluation of in-stent restenosis in proximal coronary arteries with multidetector computed tomography (MDCT). Eur Radiol 17(6):1452–63PubMedCrossRefGoogle Scholar
  26. 26.
    Kefer JM, Coche E, Vanoverschelde JL, Gerber BL (2007) Diagnostic accuracy of 16-slice multidetector-row CT for detection of in-stent restenosis vs detection of stenosis in nonstented coronary arteries. Eur Radiol 17:87–96PubMedCrossRefGoogle Scholar
  27. 27.
    Gaspar T, Halon DA, Lewis BS, et al (2005) Diagnosis of Coronary In-Stent Restenosis with Multidetector Row Spiral Computed Tomography. J Am Coll Cardiol 46:1573–1579PubMedCrossRefGoogle Scholar
  28. 28.
    Rist C, von Ziegler F, Nikolaou K, et al (2006) Assessment of coronary artery stent patency and restenosis using 64-slice computed tomography. Acad Radiol 13:1465–1473PubMedCrossRefGoogle Scholar
  29. 29.
    Groen JM, Greuter MJ, van Ooijen PM, Willems TP, Oudkerk M (2006) Initial results on visualization of coronary artery stents at multiple heart rates on a moving heart phantom using 64-MDCT. J Comput Assist Tomogr 30:812–817PubMedCrossRefGoogle Scholar
  30. 30.
    Van Mieghem CA, Cademartiri F, Mollet NR, et al (2006) Multislice spiral computed tomography for the evaluation of stent patency after left main coronary artery stenting: a comparison with conventional coronary angiography and intravascular ultrasound. Circulation 114:645–53PubMedCrossRefGoogle Scholar
  31. 31.
    Funabashi N, Maeda F, Nakamura K, et al (2006) Patency of the left coronary artery by 64-slice multislice computed tomography following implantation of sirolimus-eluting stent. Int J Cardiol 111:333–335PubMedCrossRefGoogle Scholar
  32. 32.
    Pugliese F, Cademartiri F, van Mieghem C, et al (2006) Multidetector CT for visualization of coronary stents. Radiographics 26:887–904PubMedCrossRefGoogle Scholar
  33. 33.
    Rixe J, Achenbach S, Ropers D, et al (2006) Assessment of coronary artery stent restenosis by 64-slice multi-detector computed tomography. Eur Heart J 27:2567–2572PubMedCrossRefGoogle Scholar
  34. 34.
    Ehara M, Kawai M, Surmely JF, et al (2007) Diagnostic accuracy of coronary in-stent restenosis using 64-slice computed tomography comparison with invasive coronary angiography. J Am Coll Cardiol 49:951–959PubMedCrossRefGoogle Scholar
  35. 35.
    Musto C, Simon P, Nicol E, et al 64-multislice computed tomography in consecutive patients with suspected or proven coronary artery disease: initial single center experience. Int J Cardiol. 2007; 114:90–97PubMedCrossRefGoogle Scholar
  36. 36.
    Oncel D, Oncel G, Karaca M (2007) Coronary stent patency and in-stent restenosis: determination with 64-section multidetector CT coronary angiography-initial experience. Radiology 242:403–409PubMedCrossRefGoogle Scholar
  37. 37.
    Schepis T, Koepfli P, Leschka S, et al Coronary artery stent geometry and in-stent contrast attenuation with 64-slice computed tomography. Eur Radiol. 2007; 17(6): 1464–73Google Scholar
  38. 38.
    Criteria Committee of the American Heart Association (1994) Nomenclature and criteria for diagnosis of diseases of the heart and great vessels, 9th Ed. Little, Brown, New YorkGoogle Scholar
  39. 39.
    Fleiss JL (1981) The measurement of interrater agreement. In: Statistical methods for rates and proportions. 2nd ed. John Wiley, New York, pp, 212–236Google Scholar
  40. 40.
    Maintz D, Juergens KU, Wichter T, Grude M, Heindel W, Fischbach R (2003) Imaging of coronary artery stents using multislice computed tomography: in vitro evaluation. Eur Radiol 13:830–835PubMedGoogle Scholar
  41. 41.
    Maintz D, Seifarth H, Raupach R, et al 64-slice multidetector coronary CT angiography: in vitro evaluation of 68 different stents. Eur Radiol. 2006; 16:818–826Google Scholar
  42. 42.
    Hoffmann MH, Shi H, Manzke R, et al (2005) Noninvasive coronary angiography with 16-detector row CT: effect of heart rate. Radiology 234:86–97PubMedCrossRefGoogle Scholar
  43. 43.
    Morin RL, Gerber TC, McCollough CH (2003) Radiation dose in computed tomography of the heart. Circulation 107:917–922PubMedCrossRefGoogle Scholar
  44. 44.
    Hunold P, Vogt FM, Schmermund A, et al (2003) Radiation exposure during cardiac CT: effective doses at multi-detector row CT and electron-beam CT. Radiology 226:145–152PubMedCrossRefGoogle Scholar
  45. 45.
    Bae KT, Hong C, Whiting BR (2004) Radiation Dose in Multidetector Row Computer Tomography Cardiac Imaging. J Magn Reson Imaging 19:859–863PubMedCrossRefGoogle Scholar
  46. 46.
    Hohl C, Muhlenbruch G, Wildberger JE, et al (2006) Estimation of radiation exposure in low-dose multislice computed tomography of the heart and comparison with a calculation program. Eur Radiol 16:1841–1846PubMedCrossRefGoogle Scholar
  47. 47.
    Jakobs TF, Becker CR, Ohnesorge B, et al (2002) Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur Radiol 12:1081–1086PubMedCrossRefGoogle Scholar
  48. 48.
    Wintersperger BJ, Becker CR (2005) European workshop on MR and CT Imaging of the heart: Seville, Spain, October 2004. Eur Radiol Suppl 2:B2–9, Feb 15Google Scholar

Copyright information

© European Society of Radiology 2007

Authors and Affiliations

  • Iacopo Carbone
    • 1
  • Marco Francone
    • 1
  • Emanuela Algeri
    • 1
  • Antonino Granatelli
    • 2
  • Alessandro Napoli
    • 1
  • Miles A. Kirchin
    • 3
  • Carlo Catalano
    • 1
  • Roberto Passariello
    • 1
  1. 1.Department of Radiological SciencesUniversity of Rome “La Sapienza”RomeItaly
  2. 2.San Giovanni Evangelista HospitalDepartment of CardiologyTivoli (RM)Italy
  3. 3.Worldwide Medical AffairsBracco ImagingMilanItaly

Personalised recommendations