Advertisement

European Radiology

, Volume 18, Issue 2, pp 253–262 | Cite as

Validation of a raw data-based synchronization signal (kymogram) for phase-correlated cardiac image reconstruction

  • Dirk Ertel
  • Tobias Pflederer
  • Stephan Achenbach
  • Marc Kachelrieß
  • Peter Steffen
  • Willi A. Kalender
Physics

Abstract

Phase-correlated reconstruction is commonly used in computed tomography (CT)-based cardiac imaging. Alternatively to the commonly used ECG, the raw data-based kymogram function can be used as a synchronization signal. We used raw data of 100 consecutive patient exams to compare the performance of kymogram function to the ECG signal. For objective validation the correlation of the ECG and the kymogram was assessed. Additionally, we performed a double-blinded comparison of ECG-based and kymogram-based phase-correlated images. The two synchronization signals showed good correlation indicated by a mean difference in the detected heart rate of negligible 0.2 bpm. The mean image quality score was 2.0 points for kymogram-correlated images and 2.3 points for ECG-correlated images, respectively (3: best; 0: worst). The kymogram and the ECG provided images adequate for diagnosis for 93 and 97 patients, respectively. For 50% of the datasets the kymogram provided an equivalent or even higher image quality compared with the ECG signal. We conclude that an acceptable image quality can be assured in most cases by the kymogram. Improvements of image quality by the kymogram function were observed in a noticeable number of cases. The kymogram can serve as a backup solution when an ECG is not available or lacking in quality.

Keywords

Spiral CT Cardiac imaging ECG Kymogram Heart motion 

Notes

Acknowledgments

We are grateful to the CT division of Siemens Medical Solutions for financial support of this study. We also wish to acknowledge Katja Scholz for her assistance with the statistical analysis tools.

References

  1. 1.
    Kachelrieß M, Kalender WA (1998) Electrocardiogram-correlated image reconstruction from subsecond spiral computed tomography scans of the heart. Med Phys 25(12):2417–2431PubMedCrossRefGoogle Scholar
  2. 2.
    Kachelrieß M, Ulzheimer S, Kalender WA (2000) ECG-correlated image reconstruction from subsecond multi-slice spiral CT scans of the heart. Med Phys 27(8):1881–1902PubMedCrossRefGoogle Scholar
  3. 3.
    Taguchi K, Anno H (2000) High temporal resolution for multislice helical computed tomography. Med Phys 27(5):861–872PubMedCrossRefGoogle Scholar
  4. 4.
    Flohr T, Prokop M, Becker C, Schoepf UJ, Kopp AF, White RD, Schaller S, Ohnesorge B (2002) A retrospectively ECG-gated multislice spiral CT scan and reconstruction technique with supression of heart pulsation artifacts for cardio-thoratic imaging with extended volume coverage. Eur Radiol 12(6):1497–1503PubMedCrossRefGoogle Scholar
  5. 5.
    Seibert JA, Lantz MT, Brock J (1989) Internal densitometric gating for digital subtraction angiography. Invest Radiol 24(5):350–360PubMedCrossRefGoogle Scholar
  6. 6.
    Willi A, Kalender WA, Kachelrieß M (1999) Computertomograph mit objektbezogener Bewegungsartefaktreduktion und Extraktion der Objektbewegungsinformation (Kymogramm). European Patent Office, Patent pending, Patent No.: 99111708.6–1522Google Scholar
  7. 7.
    Kachelrieß M, Sennst DA, Maxlmoser W, Kalender WA (2002) Kymogram detection and kymogram-correlated image reconstruction from subsecond spiral computed tomography scans of the heart. Med Phys 29(7):1489–1503PubMedCrossRefGoogle Scholar
  8. 8.
    Bruder H, Maguet E, Stierstorfer K, Flohr T (2003) Cardiac spiral imaging in Computed Tomography without ECG using complementary projections for motion detection. Proc SPIE 5032:1798–1809CrossRefGoogle Scholar
  9. 9.
    Manzke R, Köhler T, Nielsen T, Hawkes D, Grass M (2004) Automatic phase determination for retrospectively gated cardiac CT. Med Phys 31(12):3345–3362PubMedCrossRefGoogle Scholar
  10. 10.
    Ertel D, Kachelrieß M, Pflederer T, Achenbach S, Lapp RM, Nagel M, Kalender WA (2006) Rawdata-based detection of the optimal reconstruction phase in ECG-gated cardiac image reconstruction. Proc MICCAI LNCS 4191:348–355Google Scholar
  11. 11.
    Ertel D (2007) Kymogram-based cardiac CT image reconstruction. In: Kalender WA (ed) Berichte aus dem Institut für Medizinische Physik. Shaker, AachenGoogle Scholar
  12. 12.
    Kachelrieß M, Schaller S, Kalender WA (2000) Advanced single-slice rebinning in cone-beam spiral CT. Med Phys 27(4):754–772PubMedCrossRefGoogle Scholar
  13. 13.
    Schaller S, Stierstorfer K, Bruder H, Kachelrieß M, Flohr T (2001) Novel approximate approach for high-quality image reconstruction in helical cone-beam CT at arbitrary pitch. Proc SPIE 4322:113–127CrossRefGoogle Scholar
  14. 14.
    Flohr T, Stierstorfer K, Bruder H, Simon J, Polacin A, Schaller S (2003) Image reconstruction and image quality evaluation for a 16-slice CT scanner. Med Phys 30(5):832–845PubMedCrossRefGoogle Scholar
  15. 15.
    Landis JR, Koch GG (1977) An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics 33(2):363–374PubMedCrossRefGoogle Scholar
  16. 16.
    Hoffmann MHK, Shi H, Manzke R, Schmid FT, de Vries L, Grass M, Brambs HJ, Aschoff AJ (2005) Noninvasive coronary angiography with 16-detector row CT: effect of heart rate. Radiology 234(1):86–97PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2007

Authors and Affiliations

  • Dirk Ertel
    • 1
  • Tobias Pflederer
    • 2
  • Stephan Achenbach
    • 2
  • Marc Kachelrieß
    • 1
  • Peter Steffen
    • 3
  • Willi A. Kalender
    • 1
  1. 1.Institute of Medical Physics (IMP)University of Erlangen-NürnbergErlangenGermany
  2. 2.Department of Internal Medicine IIUniversity of Erlangen-NürnbergErlangenGermany
  3. 3.Multimedia Communications and Signal ProcessingUniversity of Erlangen-NürnbergErlangenGermany

Personalised recommendations