Advertisement

European Radiology

, Volume 18, Issue 1, pp 18–23 | Cite as

Detection of peritoneal dissemination in gynecological malignancy: evaluation by diffusion-weighted MR imaging

  • Shinya FujiiEmail author
  • Eiji Matsusue
  • Yoshiko Kanasaki
  • Yasunobu Kanamori
  • Junko Nakanishi
  • Shuji Sugihara
  • Junzo Kigawa
  • Naoki Terakawa
  • Toshihide Ogawa
Urogenital

Abstract

The aim of this study is to evaluate the usefulness of diffusion-weighted (DW) magnetic resonance (MR) imaging in detecting peritoneal dissemination in cases of gynecological malignancy. We retrospectively analyzed MR images obtained from 26 consecutive patients with gynecological malignancy. Peritoneal dissemination was histologically diagnosed in 15 of the 26 patients after surgery. We obtained DW images and half-Fourier single-shot turbo-spin-echo images in the abdomen and pelvis, and then generated fusion images. Coronal maximum-intensity-projection images were reconstructed from the axial source images. Reader interpretations were compared with the laparotomy findings in the surgical records. Receiver-operating characteristic (ROC) curves were used to represent the presence of peritoneal dissemination. In addition, the sensitivity and specificity were calculated. DW imaging depicted the tumors in 14 of 15 patients with peritoneal dissemination as abnormal signal intensity. ROC analysis yielded Az values of 0.974 and 0.932 for the two reviewers. The mean sensitivity and specificity were 90 and 95.5%. DW imaging plays an important role in the diagnosis and therapeutic management of patients with gynecological malignancy.

Keywords

MRI Diffusion-weighted MR imaging Gynecology Ovarian cancer 

Notes

Acknowledgments

We are grateful to Eiji Yamashita, B.S., Naoki Iwata, B.S., Takuro Tanaka, B.S., and Hiroki Katayama, B.S., for technical support in obtaining high-quality MR images for this study.

References

  1. 1.
    Mullins ME, Schaefer PW, Sorensen AG et al (2002) CT and conventional and diffusion-weighted MR imaging in acute stroke: study in 691 patients at presentation to the emergency department. Radiology 224:353–360PubMedCrossRefGoogle Scholar
  2. 2.
    Stadnik TW, Chaskis C, Michotte A et al (2001) Diffusion-weighted MR imaging of intracerebral masses: comparison with conventional MR imaging and histologic findings. AJNR Am J Neuroradiol 22:969–976PubMedGoogle Scholar
  3. 3.
    Lamy C, Oppenheim C, Calvet D, Domigo V, Naggara O, Meder JL, Mas JL (2006) Diffusion-weighted MR imaging in transient ischaemic attacks. Eur Radiol 16:1090–1095PubMedCrossRefGoogle Scholar
  4. 4.
    Toyoda K, Kitai S, Ida M, Suga S, Aoyagi Y, Fukuda K (2007) Usefulness of high-b-value diffusion-weighted imaging in acute cerebral infarction. Eur Radiol 17:1212–1220PubMedCrossRefGoogle Scholar
  5. 5.
    Schick F, Forster J, Machann J, Kuntz R, Claussen CD (1998) Improved clinical echo-planar MRI using spatial-spectral excita-tion. J Magn Reson Imaging 8:960–967PubMedCrossRefGoogle Scholar
  6. 6.
    Heidemann RM, Ozsarlak O, Parizel PM, Michiels J, Kiefer B, Jellus V, Muller, M, Breuer F, Blaimer M, Griswold MA, Jakob PM (2003) A brief review of parallel magnetic resonance imaging. Eur Radiol 13:2323–2337PubMedCrossRefGoogle Scholar
  7. 7.
    Takahara T, Imai Y, Yamashita T, Yasuda S, Nasu S, Van Cauteren M (2004) Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 22:275–282PubMedGoogle Scholar
  8. 8.
    Nasu K, Kuroki Y, Nawano S et al (2006) Hepatic metastases: diffusion-weighted sensitivity-encoding versus SPIO-enhanced MR imaging. Radiology 239:122–130PubMedCrossRefGoogle Scholar
  9. 9.
    Ichikawa T, Erturk SM, Motosugi U, Sou H, Iino H, Araki T, Fujii H (2006) High-B-value diffusion-weighted MRI in colorectal cancer. AJR Am J Roentgenol 187:181–184PubMedCrossRefGoogle Scholar
  10. 10.
    Koh DM, Scurr E, Collins DJ, Pirgon A, Kanber B, Karanjia N, Brown G, Leach MO, Husband JE (2006) Colorectal hepatic metastases: quantitative measurements using single-shot echo-planar diffusion-weighted MR imaging. Eur Radiol 16:1898–1905PubMedCrossRefGoogle Scholar
  11. 11.
    Hayashida Y, Yakushiji T, Awai K, Katahira K, Nakayama Y, Shimomura O, Kitajima M, Hirai T, Yamashita Y, Mizuta H (2006) Monitoring therapeutic responses of primary bone tumors by diffusion-weighted image: initial results. Eur Radiol 16:2637–2643PubMedCrossRefGoogle Scholar
  12. 12.
    Matsuki M, Inada Y, Tatsugami F, Tanikake M, Narabayashi I, Katsuoka Y (2007) Diffusion-weighted MR imaging for urinary bladder carcinoma: initial results. Eur Radiol 17:201–204PubMedCrossRefGoogle Scholar
  13. 13.
    Thoeny HC, De Keyzer F (2007) Extracranial applications of diffusion-weighted magnetic resonance imaging. Eur Radiol 17(6):1385–1393PubMedCrossRefGoogle Scholar
  14. 14.
    Naganawa S, Sato C, Kumada H, Ishigaki T, Miura S, Takizawa O (2005) Apparent diffusion coefficient in cervical cancer of the uterus: comparison with the normal uterine cervix. Eur Radiol 15:71–78PubMedCrossRefGoogle Scholar
  15. 15.
    Kurtz AB, Tsimikas JV, Tempany CM et al (1999) Diagnosis and staging of ovarian cancer: comparative values of Doppler and conventional US, CT, and MR imaging correlated with surgery and histopathologic: report of the Radiology Diagnostic Oncology Group. Radiology 212:19–27PubMedGoogle Scholar
  16. 16.
    Tempany CM, Zou KH, Silverman SG, Brown DL, Kurtz AB, McNeil BJ (2000) Staging of advanced ovarian cancer: comparison of imaging modalities-report from the Radiological Diagnostic Oncology Group. Radiology 215:761–767PubMedGoogle Scholar
  17. 17.
    Coakley FV, Choi PH, Gougoutas CA et al (2002) Peritoneal metastases: detection with spiral CT in patients with ovarian cancer. Radiology 223:495—499PubMedCrossRefGoogle Scholar
  18. 18.
    Ricke J, Sehouli J, Hach C, Hanninen EL, Lichtenegger W, Felix R (2003) Prospective evaluation of contrast-enhanced MRI in the depiction of peritoneal spread in primary or recurrent ovarian cancer. Eur Radiol 13:943–949PubMedCrossRefGoogle Scholar
  19. 19.
    Pannu HK, Horton KM, Fishman EK (2003) Thin section dual-phase multidetector-row computed tomography detection of peritoneal metastases in gynecologic cancers. J Comput Assist Tomogr 27:333–340PubMedCrossRefGoogle Scholar
  20. 20.
    Pannu HK, Bristow RE, Montz FJ, Fishman EK (2003) Multidetector CT of peritoneal carcinomatosis from ovarian cancer. Radiographics 23:687–701PubMedCrossRefGoogle Scholar
  21. 21.
    Hayashida Y, Hirai T, Morishita S et al (2006) Diffusion-weighted imaging of metastatic brain tumors: comparison with histologic type and tumor cellularity. AJNR Am J Neuroradiol 27:1419–1425PubMedGoogle Scholar
  22. 22.
    Hricak H, Chen M, Coakley FV, Kinkel K, Yu KK, Sica G, Bacchetti P, Powell CB (2000) Complex adnexal masses: detection and characterization with MR imaging - multivariate analysis. Radiology 214:39–46PubMedGoogle Scholar
  23. 23.
    Imaoka I, Wada A, Kaji Y, Hayashi T, Hayashi M, Matsuo M, Sugimura K (2006) Developing an MR imaging strategy for diagnosis of ovarian masses. Radiographics 26:1431–1438PubMedCrossRefGoogle Scholar
  24. 24.
    Nasu K, Kuroki Y, Sekiguchi R, Nawano S (2006) The effect of simultaneous use of respiratory triggering in diffusion-weighted imaging of the liver. Magn Reson Med Sci 5:129–136PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Shinya Fujii
    • 1
    Email author
  • Eiji Matsusue
    • 1
  • Yoshiko Kanasaki
    • 1
  • Yasunobu Kanamori
    • 2
  • Junko Nakanishi
    • 1
  • Shuji Sugihara
    • 1
  • Junzo Kigawa
    • 2
  • Naoki Terakawa
    • 2
  • Toshihide Ogawa
    • 1
  1. 1.Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of MedicineTottori UniversityYonagoJapan
  2. 2.Division of Reproductive-Perinatal Medicine and Gynecological Oncology, Department of Surgery, Faculty of MedicineTottori UniversityYonagoJapan

Personalised recommendations